UC IRVINE DISCUSSION SESSION

BENJAMIN FEHRMAN

ABSTRACT. The purpose of this discussion session is to introduce some fundamental concepts in
probability theory, and to derive the kinetic formulation of Burger’s equation.

Probability

Let (2, F,P) be a probability space and let { X, };cn be a sequence of independent coin flips
that satisfy

Define the simple random walk Sy = 0 and S,, = X; + ... + X, for every n € N. Prove
that, P-almost surely,

(Hint: Consider the fourth moment E[n~%52] and apply the Borell-Cantelli lemma.)

What happens if the coin flips are not fair: for some p € (0,1),
PX;=1]=p and P[X; =—-1]=1—p?

Let (2, F,P) be a probability space and let X: 2 — R be a real-valued random variable.
The distribution of X on R is the measure px defined by

px(A) =PX HA)] =PH{w € Q: X(w) € A}] for every A € B(R).

The characteristic function of a random variable X is defined by

ox(t) = E[eitX] = / eimux(da:).

R

Show that the distribution of X is uniquely determined by its characteristic function. That
is, if x = ¢y if and only if px = py. (Hint: Find a connection with the Fourier transform.)

Prove the central limit theorem: as n — oo,

b 1
Pla < S, /v < ] — / (27) % exp(—le/ar).

(Hint: Prove the convergence of the characteristic functions, and apply Levy’s continuity
theorem.)

The Kinetic Formulation

Consider the viscous Burger’s equation, for n € (0,1),
1 . .
Oupn + 50x(py) = nApy in T!x (0,00) with p(x,0) = po,

for a smooth, bounded pg. Argue that the above equation possesses a smooth and bounded
solution. (Hint: For example, use a fixed point argument.)
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(6) For a smooth, convex function S: R — R derive the equation satisfied by the composition
S(p): for every ¢ € C®(T?) show that

o [ Stovte) == [ S'o0Ve-Vo,—n [ "ol

1 1
+5 [ AS Vet [ 6V, )0,
Tl 'ﬂ‘l
(7) Introduce an additional variable £ € R and let the kinetic function x,, of p, be defined by
Xn(@,€,0) = Loce<p, (@)} — Loy (at)<e<0}-

Derive distributional equalities for the derivatives

Vaexy and Oexy,
and show that

S(po(, 1) = /R Yol €. 1) d.

(8) Show using the above distributional equalities that

o[, [ s@var==n [ [ s©vs-vu-[ [0,
~3 [, [oewes@visg [ [ vonesion

for the measure ¢, = néo(§ — py(x, 1)) |Vp,]| and therefore that, for every ¥ € C°(T! x R),

8t// :L‘&Xn:—n//V\I’ Vxn — //ﬁg\lqun
T Tt Tt JR
1
—2/ /agxng vxw+2/ /vxxngQagq:.
T! JR T! JR

And that the final term my be rewritten in the form

8t/ /\Il(x,ﬁ)xn:—n/ /Vm\I/-VXn—/ /8§\I/dqn+/ /8§XU§V1.\II.
T! JR T! JR T JR T JR

(9) Argue formally that you may pass to the limit n — 0, for which p,, — p and x,, — x strongly,
for x the kinetic function of p. Argue that there exists a finite, nonnegative measure ¢ on
T! x R such that, for every compactly supported ¥ € C>°(T! x R),

8t/Tl/R\II(:c,§)Xn:/Tl/Raf\IqunL/Tl/R@gvaw\I/.

(10) Show that, for solutions p; and py with kinetic functions x; and ya2,

/ lp1 — pe] =/ /|X1—X2\2=/ /x1sgn(§)+xgsgn(§)—2><1x2.
! m JR T JR

Formally differentiate the above inequality to show that

e o1 = p2llprery < llpoa — po2ll ey -
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