UC IRVINE DISCUSSION SESSION

BENJAMIN FEHRMAN

ABSTRACT. The purpose of this discussion session is to introduce some fundamental concepts in probability theory, and to derive the kinetic formulation of Burger's equation.

Probability

(1) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $\{X_i\}_{i\in\mathbb{N}}$ be a sequence of independent coin flips that satisfy

$$\mathbb{P}[X_i = 1] = \mathbb{P}[X_i = -1] = 1/2.$$

Define the simple random walk $S_0 = 0$ and $S_n = X_1 + \ldots + X_n$ for every $n \in \mathbb{N}$. Prove that, \mathbb{P} -almost surely,

$$\lim_{n \to \infty} \frac{S_n}{n} = 0.$$

(Hint: Consider the fourth moment $\mathbb{E}[n^{-4}S_n^4]$ and apply the Borell-Cantelli lemma.)

(2) What happens if the coin flips are not fair: for some $p \in (0,1)$,

$$\mathbb{P}[X_i = 1] = p \text{ and } \mathbb{P}[X_i = -1] = 1 - p?$$

(3) Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space and let $X : \Omega \to \mathbb{R}$ be a real-valued random variable. The distribution of X on \mathbb{R} is the measure μ_X defined by

$$\mu_X(A) = \mathbb{P}[X^{-1}(A)] = \mathbb{P}[\{\omega \in \Omega \colon X(\omega) \in A\}] \text{ for every } A \in \mathcal{B}(\mathbb{R}).$$

The characteristic function of a random variable X is defined by

$$\phi_X(t) = \mathbb{E}[e^{itX}] = \int_R e^{itx} \mu_X(dx).$$

Show that the distribution of X is uniquely determined by its characteristic function. That is, if $\phi_X = \phi_Y$ if and only if $\mu_X = \mu_Y$. (Hint: Find a connection with the Fourier transform.)

(4) Prove the central limit theorem: as $n \to \infty$,

$$\mathbb{P}[a \le S_n/\sqrt{n} \le b] \to \int_a^b (2\pi)^{-\frac{1}{2}} \exp(-|x|^2/2t).$$

(Hint: Prove the convergence of the characteristic functions, and apply Levy's continuity theorem.)

The Kinetic Formulation

(5) Consider the viscous Burger's equation, for $\eta \in (0,1)$,

$$\partial_t \rho_\eta + \frac{1}{2} \partial_x (\rho_\eta^2) = \eta \Delta \rho_\eta \text{ in } \mathbb{T}^1 \times (0, \infty) \text{ with } \rho(x, 0) = \rho_0,$$

1

for a smooth, bounded ρ_0 . Argue that the above equation possesses a smooth and bounded solution. (Hint: For example, use a fixed point argument.)

(6) For a smooth, convex function $S: \mathbb{R} \to \mathbb{R}$ derive the equation satisfied by the composition $S(\rho)$: for every $\psi \in C^{\infty}(\mathbb{T}^d)$ show that

$$\partial_t \int_{\mathbb{T}^1} S(\rho_\eta) \psi(x) = -\eta \int_{\mathbb{T}^1} S'(\rho_\eta) \nabla \psi \cdot \nabla \rho_\eta - \eta \int_{\mathbb{T}^1} S''(\rho_\eta) \psi \left| \nabla \rho_\eta \right|^2 + \frac{1}{2} \int_{\mathbb{T}^1} \rho_\eta^2 S'(\rho_\eta) \nabla \psi + \frac{1}{2} \int_{\mathbb{T}^1} \rho_\eta^2 \nabla \rho_\eta S''(\rho_\eta) \psi.$$

(7) Introduce an additional variable $\xi \in \mathbb{R}$ and let the kinetic function χ_{η} of ρ_{η} be defined by

$$\chi_{\eta}(x,\xi,\theta) = \mathbf{1}_{\{0<\xi<\rho_{\eta}(x,t)\}} - \mathbf{1}_{\{\rho_{\eta}(x,t)<\xi<0\}}.$$

Derive distributional equalities for the derivatives

$$\nabla_x \chi_\eta$$
 and $\partial_{\xi} \chi_\eta$,

and show that

$$S(\rho_{\eta}(x,t)) = \int_{\mathbb{D}} \chi_{\eta}(x,\xi,t) \,\mathrm{d}\xi.$$

(8) Show using the above distributional equalities that

$$\partial_t \int_{\mathbb{T}^1} \int_{\mathbb{R}} S'(\xi) \psi(x) \chi_{\eta} = -\eta \int_{\mathbb{T}^1} \int_{\mathbb{R}} S'(\xi) \nabla \psi \cdot \nabla \chi_{\eta} - \int_{\mathbb{T}^1} \int_{\mathbb{R}} S''(\xi) \psi \, \mathrm{d}q_{\eta}$$
$$- \frac{1}{2} \int_{\mathbb{T}^1} \int_{\mathbb{P}} \partial_{\xi} \chi_{\eta} \xi^2 S'(\xi) \nabla \psi + \frac{1}{2} \int_{\mathbb{T}^1} \int_{\mathbb{P}} \nabla_x \chi_{\eta} \xi^2 S''(\xi) \psi$$

for the measure $q_{\eta} = \eta \delta_0(\xi - \rho_{\eta}(x, t)) |\nabla \rho_{\eta}|^2$ and therefore that, for every $\Psi \in C_c^{\infty}(\mathbb{T}^1 \times \mathbb{R})$,

$$\partial_t \int_{\mathbb{T}^1} \int_{\mathbb{R}} \Psi(x,\xi) \chi_{\eta} = -\eta \int_{\mathbb{T}^1} \int_{\mathbb{R}} \nabla_x \Psi \cdot \nabla \chi_{\eta} - \int_{\mathbb{T}^1} \int_{\mathbb{R}} \partial_{\xi} \Psi \, \mathrm{d}q_{\eta} \\ - \frac{1}{2} \int_{\mathbb{T}^1} \int_{\mathbb{R}} \partial_{\xi} \chi_{\eta} \xi^2 \nabla_x \Psi + \frac{1}{2} \int_{\mathbb{T}^1} \int_{\mathbb{R}} \nabla_x \chi_{\eta} \xi^2 \partial_{\xi} \Psi.$$

And that the final term my be rewritten in the form

$$\partial_t \int_{\mathbb{T}^1} \int_{\mathbb{R}} \Psi(x,\xi) \chi_{\eta} = -\eta \int_{\mathbb{T}^1} \int_{\mathbb{R}} \nabla_x \Psi \cdot \nabla \chi_{\eta} - \int_{\mathbb{T}^1} \int_{\mathbb{R}} \partial_\xi \Psi \, \mathrm{d}q_{\eta} + \int_{\mathbb{T}^1} \int_{\mathbb{R}} \partial_\xi \chi_{\eta} \xi \nabla_x \Psi.$$

(9) Argue formally that you may pass to the limit $\eta \to 0$, for which $\rho_{\eta} \to \rho$ and $\chi_{\eta} \to \chi$ strongly, for χ the kinetic function of ρ . Argue that there exists a finite, nonnegative measure q on $\mathbb{T}^1 \times \mathbb{R}$ such that, for every compactly supported $\Psi \in C_c^{\infty}(\mathbb{T}^1 \times \mathbb{R})$,

$$\partial_t \int_{\mathbb{T}^1} \int_{\mathbb{R}} \Psi(x,\xi) \chi_{\eta} = - \int_{\mathbb{T}^1} \int_{\mathbb{R}} \partial_{\xi} \Psi \, \mathrm{d}q + \int_{\mathbb{T}^1} \int_{\mathbb{R}} \partial_{\xi} \chi \xi \nabla_x \Psi.$$

(10) Show that, for solutions ρ_1 and ρ_2 with kinetic functions χ_1 and χ_2 ,

$$\int_{\mathbb{T}^1} |\rho_1 - \rho_2| = \int_{\mathbb{T}^1} \int_{\mathbb{R}} |\chi_1 - \chi_2|^2 = \int_{\mathbb{T}^1} \int_{\mathbb{R}} \chi_1 \operatorname{sgn}(\xi) + \chi_2 \operatorname{sgn}(\xi) - 2\chi_1 \chi_2.$$

Formally differentiate the above inequality to show that

$$\max_{t \in [0,T]} \|\rho_1 - \rho_2\|_{L^1(\mathbb{T}^1)} \le \|\rho_{0,1} - \rho_{0,2}\|_{L^1(\mathbb{T}^1)}.$$

LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70802, UNITED STATES $Email\ address$: fehrman@math.lsu.edu