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1. Introduction

Two of the most basic free boundary problems are the Obstacle Problem and the
One-phase Bernoulli FBP. They both consist in minimizing an energy functional of
the type

J(u,Ω) :=

ˆ
Ω

|∇u|2

2
+W (u)dx,

among functions which are fixed on the boundary of Ω,

u = ϕ ≥ 0 on ∂Ω.

The function (potential) W is given, and it is assumed to be nonnegative and that
it achieves its minimum at 0, i.e. W : R→ [0,∞) and

W (t) = 0 if t ≤ 0, W (t) > 0 if t > 0.

The first term in the energy is minimized by the harmonic function with bound-
ary data ϕ while the second by u = 0. The presence of the potential term W has
the effect of penalizing the positive values of u. Depending on the behavior of W
near 0, minimizers can develop zero patches u = 0 inside the domain, in which case
we have a free boundary problem.

In the Obstacle Problem the potential is W (t) = t+. This corresponds to the
physical situation of an elastic membrane at rest on top of a table. The membrane is
represented by the graph of u, and it touches the table when u = 0 and it separates
away from it when u > 0. The potential term W encodes the gravitational force
acting on the membrane.

In the One-phase FBP the potential is W (t) = χ{t>0}. This corresponds to the
physical situation when the positivity set of u is penalized uniformly, and then the
minimizer u is harmonic in {u > 0}. A physical motivation for this problem comes
from the study two-dimensional steady fluid flows, where u represents the stream
lines of the flow and the region {u > 0} the location of the fluid.

These basic two FBP have many features in common but also differences. They
can be viewed as important special cases for the more general one-phase Alt-Phillips
FBP given by the family of power potentials

W (t) = tγ if t > 0, and γ ∈ (−2, 2).

Such potentials are relevant in applications in porous catalysts [A] and population
dynamics [GM].

We note that the restriction of the exponent γ to the interval (−2, 2) is necessary
in order for the zero patches to exist. This can be seen from some simple 1D analysis.
For example, if γ ≥ 2, then u > 0 in Ω by the strong maximum principle, while if
γ ≤ −2, then the energy of a function with nontrivial zero set is infinite.
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The study of this family of FBP was initiated by Phillips in [P] and Alt-Phillips
in [AP] where the basic local regularity properties of minimizers and their free
boundaries was establishedfor exponents γ ∈ (0, 2). The case of negative exponents
was considered more recently in [DS2].

In this notes we present some of the main tools and ideas that are used in the
study of the free boundary regularity for this family of problems with a focus on
the classical cases γ = 1 and γ = 0.

2. General results for γ ≥ 0

One-dimensional discussion. Assume that u : [0, δ]→ R+ solves the ODE

(2.1) u′′ = γuγ−1 in (0, δ), and u(0) = 0.

We multiply the equation by u′ and integrate, and deduce that in (0, δ)

(2.2)
1

2
u′2 = uγ + µ,

for some constant µ = 1
2 (u′(0+))2 ≥ 0. We can compute u explicitly as u = G−1

with

G : [0,∞)→ [0,∞), G(s) :=
√

2

ˆ s

0

(µ+ tγ)
− 1

2 dt.

Assume further that the extension of u by 0 on the negative axis is a minimizer
of J in the interval [−δ, δ]. Then we claim that µ = 0 and u = u0 where u0 is the
explicit function

(2.3) u0 := c0(t+)α, α =
2

2− γ
,

with c0 the constant so that (2.1) holds. We call u0 the one-dimensional solution.
In other words in 1D, the minimality of the energy implies the equipartition of the
energy.

For the claim we compare u with infinitesimal dilations with the same boundary
data

uλ(t) := u(δ + λ(t− δ))
and λ close to 1. Then

J(uλ, [−δ, δ]) =

ˆ δ

−δ

(
λ

2
(u′)2 +

1

λ
uγ
)
dt

is minimal when λ = 1 which means (u′)2/2 = uγ , and that gives µ = 0.
Alternatively, we could use Cauchy-Schwartz inequality and write

J(u, [−δ, δ]) ≥
√

2

ˆ δ

−δ
uγ/2u′dt,

and the right hand side depends only on the values of u at the end points. The
equality occurs when 1

2 (u′)2 = uγ , i.e. µ = 0.
This discussion applies for all values of γ ∈ (−2, 2). In particular, minimality

implies u′(0) = 0 if γ > 0 and u′(0) =
√

2 if γ = 0.

Convexity of the energy. The value γ = 1 is borderline for the convexity
of the energy. If γ ≥ 1 then J is convex, which implies that critical points of J
are minimizers and are unique. If γ < 1 then critical points are not necessarily
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minimizing (or stable) and uniqueness might fail. For example c0|t|α is a minimizer
when γ ≥ 1 but it is not when γ ≤ 1.

Similarly, when γ < 1, the critical point

c0[(t− 1)+]α + c0[(t+ 1)−]α

is minimizing in an interval [−a, a] with a > 1 close to 1, however it is not mini-
mizing (but only stable) if a is large.

Scaling. The equation
4u = γuγ−1

and the energy J remain invariant under the α-homogenous rescaling

ũ(x) = r−αu(rx),

with α as in (2.3). More generally, if we divide u by a > 0 and scale it by a 1
r

dilation in x

(2.4) ũ(x) =
1

a
u(rx),

it has the effect of multiplying the potential W by the constant r2aγ−2, i.e. ũ
minimizes the energy

J̃(v, Ω̃) =

ˆ
Ω̃

|∇v|2

2
+
( a
rα

)γ−2

·W (v) dx, Ω̃ =
1

r
Ω.

Continuity. We assume that the boundary data ϕ ≥ 0 is the trace of a H1(Ω)
function. The existence of a minimizer u ∈ H1(Ω) follows easily by the standard
methods. We want to prove that u is continuous and that it is smooth in {u > 0}.

Note that we cannot write the Euler-Lagrange equation in the weak sense right
away for γ ∈ [0, 1) since we do not know yet that W ′(u) is integrable.

First we claim that u is subharmonic. Indeed, using that W ′ ≥ 0 we have that
for any ψ ≥ 0, ψ ∈ C∞0 (Ω),

0 ≤ J(u− εψ,Ω)− J(u,Ω) ≤ 1

2

ˆ
Ω

|∇(u− εψ)|2 −∇u2 dx,

hence, after letting ε→ 0+ we findˆ
∇u · ∇ψ ≥ 0.

By the mean value property, u is bounded and we can define it pointwise as an
upper semicontinuous function.

Lemma 2.1 (Harnack inequality). Let u be a minimizer in B1, and assume that
u(0) ≥ C, with C large, universal. Then

c0 · u(0) ≤ u ≤ C0 · u(0) in B1/2.

Proof. If γ > 1, then

W ′(u) ∈ L∞ =⇒ 4u ∈ L∞ =⇒ u ∈ C1 =⇒ W ′(u) ∈ Cβ .
The Euler-Lagrange equation is satisfied in the classical sense and the conclusion
follows from the inequalities

0 ≤ 4u ≤ C(1 + u), u ≥ 0,

and the standard Harnack inequality.
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Assume that γ ≤ 1. Denote by a the average of u on ∂B1,

a :=

 
∂B1

u ≥ u(0) ≥ C1,

and we claim that  
∂B1/2

u ≥ a(1− Ca
γ
2−1).

Indeed, let ũ = u/a be the rescaling of u as in (2.4) with r = 1.
Let h be the harmonic replacement of ũ in B1, hence

h(0) = 1, W (h) ≤ C(1 + h) =⇒
ˆ
B1

W (h)dx ≤ C.

Minimality implies

J̃(ũ, B1) ≤ J̃(h,B1) =⇒ 1

2

ˆ
B1

|∇(ũ− h)|2 ≤
ˆ
B1

aγ−2W (h)dx ≤ Caγ−2,

hence  
∂B1/2

|ũ− h| ≤ C‖u− h‖H1(B1) ≤ Ca
γ
2−1,

which gives the claim. Now we can iterate the conclusion and obtain

(2.5) u(0) ≥ a

2
.

Indeed, by scaling, if ak denotes the average of u on ∂Br, with r = 2−k then we
have proved

ak ≥ C1r
α =⇒ ak+1 ≥ ak

(
1− Cra

γ
2−1

k

)
.

This implies (2.5) as we let k → ∞, provided that C1 is chosen sufficiently large.
Finally, since u is subharmonic we obtain

u ≤ h · a ≤ Cu(0) in B1/2,

from which the lower bound can be inferred as well.
�

Optimal regularity. Lemma 2.1 implies that u is continuous and the sets
{u = 0}, {u > 0} and the free boundary

Γ := ∂{u > 0},
are well defined in a pointwise sense. Given a point x0 ∈ {u > 0}, we rescale u by
the α-homogenous rescaling

ũ(x) = r−αu(x0 + rx),

so that ũ(0) = 1. Then Harnack inequality implies that u ∈ [c0, C0] in a ball Bc
with c small universal provided that B2c ⊂ Ω̃. As a consequence we obtain the
following bound on the growth of u away from Γ.

Lemma 2.2 (Optimal growth).

u(x) ≤ C (dΓ(x))
α
, if B2dΓ

(x) ⊂ Ω,

with dΓ(x) representing the distance function to the set Γ.

In a similar fashion we have
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Proposition 2.3 (Optimal regularity). Assume u is a minimizer in B1 and 0 ∈ Γ.
Then

‖u‖Cα(B1/2
≤ C.

When α is an integer, the Cα norm represents the usual Cα−1,1 norm. If the set
{u = 0} does not intersect say B3/4, then the right hand side should be replaced
by C‖u‖L∞(B1).

Exercise 1: Use interior estimates and Lemma 2.1 to prove Proposition 2.3.

Nondegeneracy. Next we show that a minimizer growth as |x|α in some direc-
tion away from Γ.

Lemma 2.4 (Nondegeneracy). Assume 0 ∈ Γ. Then

max
∂Br

u ≥ crα, ∀r ≤ 1.

Proof. By scaling, it suffices to show the statement for r = 1. Define

ψ(x) := δ[(|x| − 1

2
)+]max{2,α},

with δ, small universal and assume by contradiction that u < ψ on ∂B1. We
compare the energies of u and ψ in the set {u > ψ} ⊂⊂ B1 and obtain:

0 ≥
ˆ
{v>0}

1

2
|∇v|2 − v · 4ψ +W (ψ + v)−W (ψ) dx, v := (u− ψ)+.

The integrand is positive since

4ψ ≤ Cδ if γ ≤ 1, or 4ψ ≤ CδW ′(ψ) if γ > 1,

and we reach a contradiction. �

We also state the compactness property of minimizers whose proof is left as an
exercise.

Proposition 2.5 (Compactness of minimizers). Let uk be a sequence of minimizers
of J in B1 which converges uniformly to u locally in B1.

Then, u is a minimizer in B1. Moreover, on compact sets, the free boundaries
Γ(uk) converge to Γ(u) in the Huasdorff distance sense.

Exercise 2: Prove Proposition 2.5.

Monotonicity formula.

Theorem 2.6 (Weiss monotonicity formula). Let u be a minimizer to J in BR
then

Wu(r) := r−n−2(α−1)J(u,Br)−
α

2
r−(n−1)−2α

ˆ
∂Br

u2dσ, 0 < r ≤ R,

is increasing in r. Moreover, Wu is constant if and only if u is homogeneous of
degree α.

Notice that the optimal growth implies that if 0 ∈ F (u) then Wu(r) is bounded
below as r → 0.
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Proof. The quantity Wu(r) is differentiable for a.e. r and by standard computations

d

dr
J(u,Br) =

ˆ
∂Br

(
1

2
|∇u|2 +W (u))dx,

while
d

dr

(
r−(n−1)−2α

ˆ
∂Br

u2

)
dσ = 2r−n−2α

ˆ
∂Br

(ruuν − αu2)dσ.

Assume that these equalities are satisfied at r = 1. Then,

dWu

dr
|r=1 =

ˆ
∂B1

(
1

2
|∇u|2 +W (u))dσ−(n− 2 + 2α)J(u,B1)

− α
ˆ
∂B1

(uuν − αu2)dσ,

from which we deduce

dWu

dr
|r=1 =

ˆ
∂B1

(
1

2
u2
τ +W (u))dσ+

α2

2

ˆ
∂B1

u2dσ − (n− 2 + 2α)J(u,B1)

+
1

2

ˆ
∂B1

(uν − αu)2dσ.

We claim that

I(u) :=

ˆ
∂B1

(
1

2
u2
τ +W (u))dσ +

α2

2

ˆ
∂B1

u2dσ ≥ (n− 2 + 2α)J(u,B1).

Indeed let

ũ(x) := |x|αu
(
x

|x|

)
, x ∈ B1

the α-homogeneous extension of u|∂B1
. Then

I(u) = I(ũ) = (n+ 1 + 2α)J(ũ, B1),

where the last equality follows from the computation above for d
drWũ which is 0.

and our claim follows from minimality. Thus,

d

dr
Wu(r) ≥ 0, a.e. r.

The conclusion follows since Wu(r) is absolutely continuous in r. Moreover, the
computations above show that Wu is constant if and only if

uν =
α

|x|
u, for a.e. x,

that is u is homogeneous of degree α.
�

Exercise 3: Instead of minimality, use that u is a critical point with respect to
domain variations and show the equality

d

dr
Wu(r) = r−n−2α

ˆ
∂Br

(ruν − αu)2dσ.

Blow-ups. As a consequence we obtain that if 0 ∈ Γ, then as we let r → 0, the
rescalings

ur(x) := r−αu(rx),
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converge uniformly on compacts sets (along subsequences rk → 0) to a nonzero
global homogenous minimizer, i.e. a minimizing cone.

In order to understand the local regularity properties of Γ near 0 it remains is to
investigate the uniqueness of the blow-up limit and the classification of minimizing
cones at least in low dimensions.

For a cone, the value Wu is constant, and it represents the energy of the cone.
We state a dimension reduction property of minimizers. From this one can

deduce that the cone of least energy must be one-dimensional.

Lemma 2.7. Assume u is constant in the e1 direction, i.e.,

u(x1, . . . , xn) = v(x2, . . . , xn).

Then u is a minimizing cone in Rn if and only if v is a minimizing cone in Rn−1.

Exercise 4: Prove Lemma 2.7.

3. The Obstacle Problem

In this section we classify all cones in the Obstacle Problem (γ = 1).

Convexity. An important observation is that all cones must be convex.

Lemma 3.1. Let u be a cone in the Obstacle Problem. Then u is convex.

Proof. The second derivatives are bounded, homogenous of degree zero harmonic
functions in the cone {u > 0}. Heuristically, the pure second derivatives uee are
nonnegative at the boundary of the cone, and by the maximum principle they
cannot have a negative minimum which must occur in the interior of the cone.

Rigorously, assume by contradiction that

inf
{u>0}

uee = m < 0.

Let xk ∈ {u > 0} be a sequence of points such that uee(xk) → m, and let rk =
dΓ(xk). Rescale u so that Brk(xk) is mapped into B1, and denote the rescaled
function by uk. Then, up to subsequences, uk converges to a limit global solution
ū. The infimum value of ūee in {ū > 0} is achieved at the origin, and by maximum
principle, ūee must be constant in the connected component containing 0. This
means that ū is a concave second order polynomial on the line te, t ∈ R, and this
contradicts the C1 continuity where it becomes 0.

�

Exercise 5: Show that cones are convex for all γ ∈ [1, 2).

(Apply the maximum principle to Deeu
2
α .)

Boundary Harnack. Next we show that if u is a cone in the Obstacle Problem
then {u = 0} is either a half-space, or a lower dimensional subspace.

Lemma 3.2. If {u = 0} has nonempty interior then u is the one-dimensional
solution up to rotations, i.e. u = u0(x) with

u0 :=
1

2
(x+
n )2.
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If {u = 0} has empty interior then u is a quadratic polynomial, i.e. u = p(x),

p =
1

2
xTAx, with A ≥ 0, tr A = 1.

The one-dimensional cone has least energy. All the quadratic cones have double
the energy of the one-dimensional cone.

Proof. If {u = 0} contains the direction −e, the convexity implies that ue ≥ 0. If
−e is interior to {u = 0} then ue > 0 in {u > 0}, and Γ is a locally Lipschitz graph
in the e direction.

Each derivative uξ is a harmonic homogenous of degree one-function which van-
ishes on Γ. This means that on the unit sphere Sn−1, uξ is an eigenfunction
with eigenvalue n − 1 for the spherical Laplacian 4S in the Lipschitz domain
{u > 0}∩Sn−1. Since ue > 0, then it is a first eigenfunction. This means that each
uξ is a multiple of ue which implies that u is one-dimensional.

On the other hand, if {u = 0} has empty interior, then 4u = 1 a.e. in Rn. Since
u ∈ C1,1 this equation is satisfied in the weak sense, thus u ∈ C2 and the equation
holds everywhere. The desired conclusion follows from the Liouville theorem.

�

Exercise 6: Let u be a cone for some exponent γ ∈ [1, 2). Show that either u is
one-dimensional, or it is of cylindrical type - the product of a cone with isolated
singularity in Rk times Rn−k.

Uniqueness of blow-ups. We show that if a solution u is well approximated by
the one dimensional cone u0 in B1, then it is well approximated by slight rotations
of u0 in all balls Br, r > 0. We present a proof that is different than the original
proof of Caffarelli.

Proposition 3.3 (Improvement of flatness). Assume that u is a solution to the
Obstacle Problem in B1 and

|u− u0| ≤ ε in B1,

with ε ≤ ε0 small universal. Then

|u− ū0| ≤
ε

2
ρ2 in Bρ,

for some ρ universal, and ū0 denotes a rigid motion perturbation of u0:

ū0(x) =
1

2
[(x · ν − a)+]2, |ν − en| ≤ Cε, |a| ≤ Cε.

Proof. Nondegeneracy and optimal growth imply that

Γ ∩B1/2 ⊂ {|xn| ≤ Cε1/2}.
Denote the rescaled error function by

v :=
1

ε
(u− u0), |v| ≤ 1.

A key observation is that |v| is subharmonic since (u − u0)+ and (u − u0)− are
subharmonic.

Since in B1/2, v = 0 on xn = −Cε1/2, and |v| ≤ 1, we conclude that

|v| ≤ C ′(xn + Cε1/2) in B1/4.
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On the other hand v is harmonic in xn ≥ Cε1/2, hence

|v − h| ≤ C1ε
1/2 in B1/4 ∩ {xn ≥ Cε1/2},

where h denotes the harmonic function that vanishes on {xn = Cε1/2} ∩B1/4 and
agrees with v on the remaining portion of the boundary. We find that

|v − axn − bixixn| ≤
1

4
ρ2 in Bρ,

from which the conclusion follows with ν the unit direction of the vector en+ εbiei.
�

By iterating Proposition 3.3 we obtain the C1,β regularity of Γ near the points
that admit a one-dimensional blow-up profile. Such points are refereed to as regular
points.

Corollary 3.4. Under the hypotheses of Proposition 3.3, the free boundary Γ is a
C1,β graph in the en direction with norm bounded by Cε.

Higher regularity and analyticity of Γ at regular points follows from the work of
Kinderlehrer-Nirenberg.

The uniqueness of the quadratic blow-up cones (at the singular points) follows
from the Monneau monotonicity formula that we leave as an exercise.

Exercise 7. Assume that 0 is a singular point. Then

d

dr

 
∂Br

(u− p)2dσ ≥ 0,

where p is a quadratic cone.

Cones for γ close to 1. The quadratic polynomials p in the obstacle problem
represent a continuous family of cones. There is however a more rigid picture in
the case when γ is close to 1, γ 6= 1. Recently with Hui Yu in [SY1] we showed that
up to rotations only the axis symmetric quadratic polynomials i.e.

pk =
1

2k

k∑
i=1

x2
i , for some k ≤ n,

can appear as limits of cones with exponents γm → 1, γm 6= 1.

Open problem: Show that all cones for exponents γ 6= 1 close to 1, are axially
symmetric, that is, they are the extension to Rn of a radial cone in Rk for some
k ≤ n.

We remark that in 2D the cones can be analyzed for all exponents γ by studying
the corresponding nonlinear ODE on the unit circle. Bonorino et al. in [BBLT]
computed the number of cones (up to rotations) explicitly in terms of γ. This
number tends to ∞ as γ → 2, and in particular it shows that as γ > 1 increases
there are cones in 2D that are not radially symmetric.
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4. The One-Phase Problem

In this section we discuss more in detail the One-Phase FBP (γ = 0). A major
difference with the previous section is that the energy is no longer convex. Thus a
solution that is minimizing the energy in small balls is not necessarily a minimizer
(or stable) in the whole domain Ω. On the other hand, solutions are harmonic in
their positivity set which makes it easier to deal with the interior equation.

We write the energy in its more customary form

J(u,Ω) =)

ˆ
Ω

|∇u|2 + χ{u>0} dx,

so that the free boundary condition on the smooth part of Γ takes the form

|∇u| = 1 on Γ.

The problem remains invariant under the Lipschitz rescaling

ur(x) = r−1u(rx).

Two examples of global solutions that are not globally minimizing are

(|xn| − 1)+ and cn
(
1− |x|2−n

)+
,

and the family generated by their rescalings.

Viscosity solutions. It is convenient to have a more general notion of solution
that is preserved when taking uniform limits of classical solutions.

Definition 4.1. A continuous function u : Ω→ R+ is a viscosity supersolution to
the One-Phase FBP if

a) 4u ≤ 0 in {u > 0};
b) u cannot be touched by below at x0 ∈ Γ by a test function ϕ+, that satisfies

ϕ ∈ C1, ϕ(x0) 6= 0, |∇ϕ(x0)| > 1.

Similarly, u is a viscosity subsolution if
a’) 4u ≥ 0 in {u > 0};
b’) u cannot be touched by above at x0 ∈ Γ by a test function ϕ+, that satisfies

ϕ ∈ C1, ϕ(x0) 6= 0, |∇ϕ(x0)| < 1.

A viscosity solution satisfies both the subsolution and supersolution properties.

Notice that |xn| is a viscosity solution, and so is ax+
n + bx−n with a, b ∈ (0, 1].

Exercise 8: Show that if u minimizes the energy J in small balls, then u is a
viscosity solution.

Optimal growth. Viscosity solutions grow at most linearly away from Γ.

Lemma 4.2. Let u be a viscosity solution to the One-Phase FBP. Then

u(x) ≤ CdΓ(x),

provided that BdΓ(x)(x) ⊂ Ω.
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Proof. By scaling we may assume that B1 ⊂ {u > 0} is tangent to Γ at some point
x0 ∈ ∂B1. It suffices to show that u(0) ≤ C.

Since u > 0 is harmonic in B1 we find from Harnack inequality that

u ≥ cu(0) in B1/2,

hence

u ≥ c′u(0)(|x|2−n − 1) in B1 \B1/2,

by the maximum principle. This contradicts the supersolution property at x0 if
u(0) is sufficiently large.

�

By using the optimal growth one can show that the free boundary has finite
perimeter.

Exercise 9: Assume that u is a viscosity solution in B1. Show that the level sets
{u = ε} for all small ε, have bounded Hn−1 measure in B1/2.

(Hint: Integrate 4u in the set {u > ε} ∩B1/2.)

Nondegeneracy. Minimizers satisfy a nondegeneracy condition that takes a
stronger form than the one in the Obstacle Problem.

Lemma 4.3 (Nondegeneracy). Assume u is a minimizer of J . Then

u(x) ≥ c dΓ(x),

provided that BdΓ(x)(x) ⊂ Ω.

Proof. As above we may assume that B1 ⊂ {u > 0} and we need to show that
u(0) > c. By Harnack inequality

u ≤ Cu(0) in B1/2.

If u(0) is sufficiently small, then

v := min
{
u, (r2−n

0 − |x|2−n)+
}
, r0 =

1

2
− δ,

coincides with u on ∂B1/2. On the other hand v has less energy than u in B1/2

since

J(u,B1/2) ≥ |B1/2|, J(v,B1/2) ≤ Cδ,

and we reach a contradiction.
�

Density estimates. Another difference with the Obstacle Problem is that the
zero set {u = 0} of minimizers satisfies a uniform density estimate.

Lemma 4.4 (Uniform density). Let u be a minimizer of J . Assume that 0 ∈ Γ.
Then

1− c ≥ |{u = 0} ∩Br|
|Br|

≥ c, ∀Br ⊂ Ω.
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Proof. After rescaling we may assume r = 1.
By Lemma 2.4 and Lemma 4.3 we know that {u > 0}∩B1 contains a ball Bc(x0)

for some c universal, and u(x0) ≥ c1. This gives the upper bound of the density.
For the lower bound we denote by

a(r) := |{u = 0} ∩Br|,
and let h be the harmonic replacement of u in B1. The minimality implies

a(1) ≥
ˆ
B1

|∇(h− u)|2dx ≥ c
(ˆ

B1

(h− u)2∗dx

)2/2∗

.

We have

h(x0) ≥ u(x0) ≥ c1 =⇒ h ≥ c2(1− |x|).
By integrating on the set {u = 0} we find

a(1)1+δ ≥ c3tC0 · a(1− t),
with δ = 2∗/2− 1, C0 = 2∗ depending only on n.

We write this inequality for consecutive terms of the sequence

ak := a(1/2 + 2−k), k ≥ 1,

and find that if a1 is sufficiently small, then ak → 0 as k → ∞. This implies
a(1/2) = 0 which gives {u > 0} in B1/2, and we reach a contradiction.

�

Improvement of flatness. Next we discuss the improvement of flatness for
viscosity solutions following the approach of De Silva [D].

Proposition 4.5 (Improvement of flatness). Let u be a viscosity solution such that

0 ∈ Γ and (xn − ε)+ ≤ u ≤ (xn + ε)+ in B1,

for some ε ≤ ε0 small. Then

(x · ν − ε

2
ρ)+ ≤ u ≤ (x · ν +

ε

2
ρ)+ in Bρ,

with ρ > 0 universal, and

|ν − en| ≤ Cε, |ν| = 1.

Proof. We denote by v the rescaled error function in the set {u > 0}

v :=
1

ε
(u− xn), |v| ≤ 1.

We want to show that v is well approximated by the solution to the linearized
problem, that is, the Laplace equation with Neumann boundary condition in B+

1 .
Clearly v is harmonic in {xn > ε} ∩B1, and v(0) = 0.

Step 1: (Harnack inequality) We show that the oscillation of v is decaying at a
fixed rate when restricted to dyadic balls Br(x0) centered at points

x0 ∈ {xn = 0} ∩B1/2, as long as r ≥ Cε.
Assume for simplicity that x0 = 0. The claim follows if we show that in B1/2

one of the two original bounds improved i.e.

either u ≥ (xn − (1− δ)ε)+, or u ≤ (xn + (1− δ)ε)+,
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for some δ > 0 universal. Then we can iterate this conclusion in dyadic balls till
the radius of the ball becomes comparable to ε.

For the improvement on the original bounds, let’s assume that at the point
x̄ = 1

4en, u is closer to the top constraint than to the bottom one, that is, u ≥ xn
at x̄. Then Harnack inequality implies that

u− (xn − ε) ≥ cε in B1/8(x̄).

Then we use small vertical translations of order ε of the explicit barrier

ϕ(x) := xn − ε+ c1ε(|x− x̄|2−n − (3/4)2−n) in B3/4(x̄) \B1/8(x̄),

which are admissible as test functions for the supersolution property. We reach the
conclusion that u ≥ ϕ+, which gives the desired improvement on the lower bound.

Step 2; (Compactness) We consider a sequence of error functions vk correspond-
ing to a sequence of εk → 0 (and functions uk), and show that for k large enough
vk is approximated by a solution to the Neumann problem.

By Step 1, we can extract a subsequence of the vk’s whose graphs converge
uniformly on compact sets of the cylinder B1/2×R to the graph of a Hölder function
v̄ that satisfies

v̄ : B
+

1/2 → [−1, 1], 4v̄ = 0, v̄(0) = 0.

We check that v̄ satisfies the Neumann condition

v̄n = 0 on {xn = 0},

in the viscosity sense.
Assume by contradiction that v̄ is touched strictly by below at 0 in a small

neighborhood by a quadratic polynomial P that satisfies

Pn(0) > 0, 4P > 0.

Then a small vertical translation of

ϕk(x) := xn + εkP

touchs uk by below at a point that converges to 0 as k → ∞. On the other hand,
ϕk is an admissible test functions for the supersolution property and we reach a
contradiction.

The estimates for v̄ imply

|v̄ − b′ · x′| ≤ 1

4
ρ in Bρ,

from which the conclusion follows.
�

As in the previous section, Proposition 4.5 implies that Γ is smooth in a neigh-
borhood of a regular point, that is a point where the blow-up limit cone is one-
dimensional.

The linearized equation. Next we assume that Γ is smooth and u is a classical
solution to the One-Phase problem in Ω, and we deduce its linearized equation.

We write a generic nearby solution in the form

(u+ εv)+,



14 OVIDIU SAVIN

where u is extended away from {u > 0} in a C2 fashion. We require that the
function above solves the problem up to first order in ε. The interior equation gives

4v = 0 in {u > 0}.

In order to check the boundary condition for v at some point x0 ∈ Γ, it is conve-
nient to write a perturbed function as above in a neighborhood of x0 as a domain
perturbation of u:

u(x+ εΦ), Φ = v
∇u
|∇u|2

.

The choice of Φ is so that the two functions differ by O(ε2). Then, we have

1 = |∇u · (I + εDΦ)|+O(ε2), at x = x0,

hence we find

∇u ·DΦ · (∇u)T = 0 at x0.

We choose a system of coordinates where en is the inner normal to Γ at x0 pointing
towards the positivity set, hence ∇u(x0) = en, and obtain(

vun
|∇u|2

)
xn

= 0 =⇒ vn − unnv = 0 at x0.

Notice that uij(x0) with i, j < n are the entries of the second fundamental form of
Γ at x0, thus

4u = 0 =⇒ unn = −H,
where H denotes the mean curvature of Γ at x0 oriented towards the complement.

In conclusion, the linearized equation is

(4.1)

 4v = 0 in {u > 0},

vν +H v = 0 on Γ,

where ν denotes the inner normal to Γ and H the mean curvature of Γ.
Clearly, the derivatives ue of u solve the Linearized equation (4.1).
The linearized equation has variational structure with the associated energy

given by

(4.2)

ˆ
{u>0}

|∇v|2dx−
ˆ

Γ

Hv2 dσ.

Stability. Next we discuss the stability of conical solutions which are classical
outside the origin, that is, their free boundaries have smooth cross section on the
unit sphere.

First we remark that |∇u| is a 0-homogenous subharmonic function in {u > 0}
which takes the value 1 on the boundary. By maximum principle

|∇u| ≤ 1 in {u > 0} =⇒ H = −uνν ≥ 0 on Γ.

A general principle states that the stability of a solution in a domain U is equiva-
lent to the first eigenvalue of the linearized operator being nonnegative. This means
that stability/instability of a solution is equivalent to the existence of positive/sign-
changing solutions to the linearized equation.
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In the case of cones, solutions to the linearized equation (4.1), can be obtained
by separations of variables as

v = f(r)v̄(θ), r = |x|, θ =
x

|x|
∈ Sn−1,

with
a) v̄ > 0 is the first eigenfunction of (4.1) on the unit sphere: 4S v̄ = Λv̄ in {u > 0} ∩ Sn−1,

v̄ν +H v̄ = 0 on Γ ∩ Sn−1,

and −Λ denotes the first eigenvalue.
b) f is a solution to the second order ODE

f ′′ + (n− 1)
f ′

r
f ′ + Λ

f

r2
= 0.

The ODE has sign changing solutions if and only if

(4.3) Λ >
(n

2
− 1
)2

which is the sharp criteria for the instability of u.
In practice, such an inequality on the first eigenvalue can be shown by finding

an explicit subsolution ṽ ≥ 0 on the unit sphere : 4S ṽ ≥
(
n
2 − 1

)2
ṽ in {u > 0} ∩ Sn−1,

ṽν +H ṽ ≥ 0 on Γ ∩ Sn−1,

with the inequalities being strict at least at one point.
This can be written equivalently, in terms of the existence of a globally defined

function v which is homogenous of a certain degree −µ and that is a subsolution
to an appropriate eigenvalue problem.

Exercise 10: Inequality (4.3) is equivalent to the existence of a function v ≥ 0,
homogenous of degree −µ, which is a strict subsolution for the following problem

(4.4)

 4v ≥
(
n
2 − 1− µ

)2 v
|x|2 in {u > 0},

vν +H v ≥ 0 on Γ \ {0}.

The criteria (4.4) was used in Jerison-Savin [JS] to show that in dimension n ≤ 4,
the only stable cones are one-dimensional. This improved the prior results of Alt-
Caffarelli [AC] for n = 2, and Caffarelli-Jerison-Kenig [CJK] for n = 3. As a
consequence

Theorem 4.6 ([JS]). Let u be a minimizer of J . Then Γ is smooth if n ≤ 4.

The idea in [JS] is to choose a convenient test subsolution

v = f(λ1, .., λn),

with f a homogenous symmetric function of the eigenvalues of D2u. Some of the
key computations are given in the next exercises.
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Exercise 11: Let u be a harmonic function. Show that

|∇u|1− 1
n and |D2u|1− 2

n are subharmonic.

Here we use the norm

|D2u| = |(λ1, .., λn)| = (Σu2
ij)

1/2.

Exercise 12: Let u be a cone with smooth cross section. Show that v = |D2u| 13
satisfies (4.4) in dimension n = 3.

Axis symmetric cones. We consider cones that have xn as axis of symmetry,
and are invariant under rotations in the first n− 1 variables. Denote by

t = xn, s = |x′|,
and let uas be the 1-homogenous harmonic function even in t that is obtained by
rotating

uas(x) = h(s, t) = rf(θ),

along the t axis, where r, θ denote the polar coordinates in the s, t plane.
Up to a multiplicative constant, the function f satisfies the ODE

f ′′ − (n− 2) tan θ · f ′ + (n− 1) · f = 0, f(0) = 1, f ′(0) = 0,

and it is defined in the maximal interval [−θ0, θ0] where f remains positive. Then,
on the unit sphere H is constant

H = (f ′′/f ′)(θ0) = (n− 2) tan θ0.

According to the analysis above, to check the stability of this solution we need to
solve the ODE

g′′ − (n− 2) tan θ · g′ +
(
n− 1− (

n

2
− 1)2

)
· g = 0, g(0) = 1, g′(0) = 0,

and then compare g′/g and (n− 2) tan θ at the end point of the interval θ0.
The numerics have been carried out in [CJK, H], and it turns out that

uas is unstable if n ≤ 6 and stable if n ≥ 7.

However the instability can be deduced from a simple computation (due to X.
Cabrè) by considering

v := |∇x′uas| = hs ≥ 0,

as a test subsolution. Indeed,

4uas = 4h+ (n− 2)
hs
s

= 0,

and differentiating the second equation with respect to s, we obtain

4v = (n− 2)
v

s2
≥ (n− 2)

v

|x|2
.

Notice that v is a subsolution on Γ since it is the supremum over a collection of
derivatives of u, and v is homogenous of degree 0. From (4.4) we obtain that uas
is unstable if

n− 2 ≥
(n

2
− 1
)2

⇐⇒ n ≤ 6.

De Silva and Jerison in [DJ] showed that uas is in fact a minimizing cone in
dimension n = 7 by constructing appropriate sub/supersolutions on both sides of
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the cone. The construction is nontrivial and requires some numerics. Dimension
n = 7 is the least in which a nontrivial minimizing cone is known to exist.

These results are the counterpart of the work of Bombieri-De Giorgi-Giusti in
the case of minimal surfaces.

Open Problem: Show that all minimizing cones are one dimensional in dimensions
n = 5, 6 (or find a counterexample.)

5. Alt-Phillips as a degenerate One-Phase Problems

It is convenient to make a change of variables to a solution of the Alt-Phillips
problem with general exponent γ so that the new function intersects the zero phase
transversally as in the case γ = 0. In this way, at least in the case when the
free boundary is a nice graph in the en direction, we can perform a Hodograph
transformation and end up with a Lipschitz function in a fixed domain with flat
boundary. This strategy is usually employed to establish the higher regularity.

The hodograph transformation referred above interchanges the xn and xn+1

variables, and that has the effect of rotating the graph by 90◦.
As observed by Alt and Phillips, after a simple change of variables

w = u1/α, α :=
2

2− γ
, α ∈ (1,∞),

the problem above can be viewed as a One Phase FBP for w. It turns out that w
is Lipschitz and it solves a degenerate equation of the type

(5.1) ∆w =
h(∇w)

w
in {w > 0},

with

(5.2) ∇w ⊂ {h = 0} on ∂{w > 0},

where h is the quadratic polynomial

h(p) =
γ

α
− (α− 1)|p|2.

A key feature of equation (5.1) is that it remains invariant under Lipschitz scaling
w̃(x) = w(rx)/r. The right hand side degenerates as w approaches 0 and the free
boundary condition (5.2) can be understood as a natural balancing condition in
order to seek out for Lipschitz solutions w.

Viscosity solutions. More generally, we consider nonlinearities as in (5.1) with
h ∈ C1(Rn) that vanish on the boundary of a star shaped C1 domain D. Assume
that 0 ∈ D and

(5.3) h ≥ 0 in D, h ≤ 0 in D̄c,

(5.4) h(p) ≥ −C|p|2, C > 0, as |p| → ∞.

The Alt-Phillips problem with exponent γ corresponds to the particular case

(5.5) h(p) = (α− 1)(1− |p|2), D = B1, α− 1 =
γ

2− γ
∈ [0,∞).
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The degenerate one-phase FBP for continuous function w ≥ 0 becomes

(5.6)


∆w =

h(∇w)

w
in Ω ∩ {w > 0},

∇w ∈ ∂D, on Γ(w) := ∂{w > 0} ∩ Ω.

The equalities in (5.6) are understood in the viscosity sense. The notion of
viscosity solution for the interior equation is standard, while the free boundary
condition is as in the Definition 4.1, with the inequalities in b) and b’) replaced by

∇ϕ ∈ Dc
and ∇ϕ ∈ D.

As mentioned above, a key feature of the problem (5.6) is that it is invariant under
Lipschitz rescalings

w̃(x) :=
w(rx)

r
, x ∈ B1.

General results. The degenerate problem (5.6) was investigated in [DS1]. It
turns out that many of the results from the one-phase problem continue to carry
on. We only mention some of the main results in [DS1]:

a) existence of viscosity solutions by Perron’s method;
b) optimal growth and regularity of solutions, i.e.

w(x) ≤ CdΓ(x), ‖w‖C0,1 ≤ C, w ∈ C2,β
loc ({w > 0});

c) nondegeneracy of the least viscosity solution;
d) Hn−1 measure bound of the free boundary Γ for nondegenerate solutions;
e) improvement of flatness at flat free boundary points.

We make a few comments regarding the interior regularity for solutions to (5.1).
This is not immediate as the right hand side degenerates either as w → 0 or
∇w → ∞. It is useful to apply the work of Imbert and Silvestre [IS] where the
weak Harnack estimates for solution to linear equations that are uniformly elliptic
only when the gradient is large were developed. Notice that (5.3)-(5.4) imply that
4w ≤ 0 when |∇w| is large, while wM is subharmonic for some large constant M .
These are sufficient to establish a local Harnack inequality and obtain a uniform
Hölder modulus of continuity for w.

The linearized equation. We comment on the type of linearized equations for
these degenerate problems. Assume for simplicity that we are in the Alt-Phillips
problem with exponent γ, i.e. h and D are as in (5.5), and assume that a solution
w satisfies the flatness assumption

(xn − ε)+ ≤ w ≤ (xn + ε)+ in B1.

It turns out that the rescaled function

w̃ =
w − xn

ε
,

is well approximated by a solution of the following linearized equation:

(5.7) ∆v + s
vn
xn

= 0 in B+
1 , s := 2(α− 1) =

2γ

2− γ
,
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with the “Neumann” boundary condition

(5.8) ∂x1−s
n

v = 0 on {xn = 0},

that is satisfied in the viscosity sense.
The value of the coefficient s plays an important role in the equation (5.7) and

it is not allowed to be less than or equal to −1. Precisely, the boundary condition
(5.8) is understood in the following sense:

a) If s ≥ 1 then v is bounded near {xn = 0}.
b) If s ∈ (−1, 1) then v is continuous up to {xn = 0} and it cannot be touched

by below (above) locally by the family of comparison functions

p(x′) + tx1−s
n with t > 0 ( or t < 0) and p(x′) quadratic,

at points on {xn = 0}.

When s ∈ (−1, 1), Problem (5.7) in Rn+ is simply the extension problem of
Caffarelli-Silvestre for the Dirichlet to Neumann operator representing

∆
1−s

2

x′ v on {xn = 0}.

In this range of s, both the Dirichlet and the Neumann boundary conditions can
be imposed on xn = 0. However, when s ≥ 1, only the Neumann condition can
be imposed and it simply requires the function to be bounded. When s ≤ −1, the
Dirichlet condition is meaningful, but the Neumann condition in the sense defined
above cannot be imposed.

It is not too difficult to show that solutions to the Neumann problem (5.7)-(5.8)
have pointwise C1,β estimates (see [DS1] for the details).

Theorem 5.1. Assume that v is a solution of (5.7)-(5.8), and s > −1. Then

|v(x)− v(0)− a′ · x′| ≤ C‖v‖L∞ |x|1+β ,

with C large, β > 0 small, depending only on n and s.

Axis symmetric cones for γ close to 1. With Hui Yu in [SY2] we studied the
minimality of the radial and the axis symmetric cones for exponents γ ∈ (1− δ, 1)
with δ small. We showed that the radial cone is not minimizing in dimension n = 2
but it is minimizing in dimension n = 3.

More interestingly, we showed the existence of an axis symmetric minimizing
cone in dimension n = 4 whose zero set has positive density. This is the analogue
of the De Silva-Jerison cone. Thus in this range of exponents, there are minimizing
cones with the features of the Obstacle Problem but also cones with the features of
the One-Phase Problem.

Exercise 13: Assume that γ < 1 is close to 1. Show that the radial cone is stable
in dimension n = 3 but unstable in dimension n = 2.

6. Negative exponents

In this section we consider the case of negative exponents

γ ∈ (−2, 0).
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In order to figure out the correct free boundary condition for minimizers, we go
back to the one-dimensional example (2.1)-(2.2). We see that the general solution
to the ODE that vanishes at 0, and that is positive in (0, δ), has the form

(6.1) u(t) = G−1(t) = c0t
α + µc1t

2−α +O(tσ),

with

α =
2

2− γ
∈ (

1

2
, 1), σ > 2− α,

and positive constants c0, c1 and σ depending only on γ.
The minimizing solution is the one with µ = 0. This means that for negative

exponents, the minimality condition imposes the value of the second coefficient in
the expansion of a generic solution. We remark that for positive exponents this
involved the value of the first coefficient in the expansion.

The second coefficient is not easily detected using integration, so it is convenient
to use the notion of viscosity solution to define the free boundary condition. We
show below that minimizers are indeed viscosity solutions.

Viscosity solutions. We consider the one-phase free boundary problem:

(6.2)

{
∆u = −uγ−1 in {u > 0} ∩B1,

u(x0 + tν) = c0t
α + o(t2−α) on Γ(u) := ∂{u > 0} ∩B1,

with t ≥ 0, ν the unit normal to F (u) at x0 pointing towards {u > 0}, and

(6.3) α :=
2

2− γ
, c0 := [α(1− α)]−

1
γ+2 , γ ∈ (−2, 0), α ∈ (

1

2
, 1).

When we say that u touches φ ≥ 0 strictly by above at x0, means that u ≥ φ in
a neighborhood B of x0 and u > φ (except at x0) in B∩{φ > 0}. Similarly, strictly
by below means the inequality to be strict in a neighborhood of x0 intersected with
{u > 0}.

For test functions for the boundary condition, we only consider functions that
depend on the distance to the boundaries of balls in Rn:

a) denote by C+ the class of continuous functions φ for which there exists a ball

B := BR(z0), z0 ∈ Rn,

so that

φ(x) = φ(|x− z0|) > 0 in B, φ = 0 in Bc.

In this case we use the notation

d(x) := dist(x, ∂B) if x ∈ B, and d(x) = 0 if x ∈ Bc.

b) similarly we define the class C−, by interchanging B and Bc in part a).

Definition 6.1. We say that a non-negative continuous function u satisfies (6.2)
in the viscosity sense, if

1) in the set where u > 0, u is C∞ and satisfies the equation in a classical sense;
2) if x0 ∈ Γ, then u cannot touch ψ ∈ C+ (resp. C−) by above (resp. below) at

x0, with

ψ(x) := c0d(x)α + µd(x)2−α,

α, c0 as in (6.3) and µ > 0 (resp µ < 0).
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Exercise 14: Show that the barrier ψ in the definition above can be conveniently
modified locally by adding to it a lower order term d(x)σ so that it becomes a
subsolution (supersolution) of the interior equation (and in addition the touching
may be assumed to be strict at x0.)

Results. In [DS2] we investigated the properties of minimizers and established:
a) existence of minimizers
b) optimal regularity and nondegeneracy
c) improvement of flatness
d) C1,β regularity of Γ up to a closed singular set of codimension 3.
e) A Gamma convergence result to the perimeter functional as γ → −2.

We state the Gamma convergence result for appropriate multiples of the J func-
tional as γ → −2. Let Ω be a bounded Lipschitz domain. We equip the space of
nonnegative integrable functions

X := {u ∈ L1(Ω), u ≥ 0}
with the distance

dX(u, v) := ‖u− v‖L1 + ‖χ{u>0} − χ{v>0}‖L1 .

Theorem 6.2. As γ → −2, the rescaled J functionals

Jγ(u) := cγ J(u,Ω), cγ := (1 +
γ

2
)
√
|γ|/2,

Gamma converge in X to the perimeter function

P(u) = PerΩ({u > 0}).
Precisely,

a) if un → u in X and γn → −2, then lim inf Jγn(un) ≥ P(u);
b) given u ∈ X, there exists un → u in X such that Jγn(un)→ P(u).

Minimizers as viscosity solutions. Finally we show how the second coeffi-
cient in the expansion appears in the minimality condition. We focus on the free
boundary condition which is more delicate.

Lemma 6.3. Let u minimize J in B1. Then u is a viscosity solution to (6.2).

Proof. Let us assume that u touches ψ by above at x0 ∈ F (u), with ψ as in
Definition 6.1 and µ > 0. Then in view of Exercise 14, u touches φ strictly by
above at x0, with φ defined as

φ := c0d
α +

µ

2
d2−α + dσ,

We will show that this contradicts the minimality of u, using a calibration argument.
For simplicity, assume that the unit normal to F (u) at x0 is en. For any non-
negative function v, smooth in its positivity set, we denote by Γv its graph in Rn+1

over the positivity set, and by νv(x) the upward unit normal to Γv at (x, v(x)).
Notice that we can write the energy of u over a domain Ω as a surface integral

over its positivity graph in Ω, Γu(Ω), in the following way:

(6.4) J(u,Ω) =

ˆ
Γu(Ω)

G(u, νu)dσ,
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with

G(s, ν) :=
1

2

|ν′|2

νn+1
+W (s)νn+1,

and
s > 0, |ν| = 1, ν := 〈ν′, νn+1〉, νn+1 > 0.

Let G(s, y) is the 1-homogeneous extension (in y) of G(s, ν). Then,

∇yG(s, ν) := 〈 ν′

νn+1
,−1

2

|ν′|2

ν2
n+1

+W (s)〉,

and the homogeneity and convexity in y imply,

(6.5) G(φ(x), νφ(x)) = Vφ(x, φ(x)) · νφ(x),

with
Vφ(x, φ(x)) := ∇yG(φ(x), νφ(x)),

and

(6.6) G(φ(x), νu(x)) ≥ Vφ(x, φ(x)) · νu(x).

The vector field Vφ(x, φ(x)) is defined on the graph Γφ, and we extended in
Rn+1 constantly in the en direction and denote it simply by V . This vector field is
associated with the graphs of the translations

φt(x) := φ(x+ ten), t ∈ R,
which provide a foliation of a neighborhood of (x0, 0) in Rn ×R+. In other words,
for each given point X := (x, xn+1) in this set, we identify the element φtX of the
foliation that passes through it i.e xn+1 = φtX (x) and

V (X) = VφtX (X).

Now, set
D := {u(x) < xn+1 < φt̄(x)} ⊂ Rn+1,

with t̄ > 0 chosen in such a way that D is included in the neighborhood of (x0, 0)
foliated by the graphs of the φt’s. Denote by

Dε := D ∩ {xn+1 > ε}, and Γε := D ∩ {xn+1 = ε},
for ε > 0 small. Then, by the divergence theorem,ˆ

Dε

div V dX =

ˆ
Γφt̄∩∂Dε

V · νφt̄ dσ −
ˆ

Γu∩∂Dε
V · νu dσ −

ˆ
Γε

V · en+1 dx,

and in view of (6.5)-(6.6),ˆ
Dε

div V dX ≥
ˆ

Γφt̄∩∂Dε
G(φt̄, νφt̄) dσ −

ˆ
Γu∩∂Dε

G(u, νu) dσ −
ˆ

Γε

V · en+1 dx.

From the formula for V , on Γε, for ε small,

V (x, ε) · en+1 = −1

2
|∇φtX |2 −

1

γ
φγtX ≤ 0.

Indeed, we only need to verify that the one variable function of d,

φ(d) := c0d
α +

µ

2
dβ + dσ,

satisfies:
1

2
φ′2 ≥ 1

|γ|
φγ , if d > 0 is small.
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Since µ > 0, we know that φ ≥ c0d
α while φ′ ≥ αc0d

α−1. Hence, by the definition
of α, c0 (see (6.3)),

φ′2 ≥ α2c20d
2(α−1) = α2c20d

αγ ≥ α2c2−γ0 φγ =
2

γ
φ−γ ,

as desired.
Finally, this implies that, after letting ε→ 0,

(6.7)

ˆ
D

div V dX ≥
ˆ

Γφt̄∩∂D
G(φt̄, νφt̄) dσ −

ˆ
Γu∩∂D

G(u, νu) dσ.

Next we show that
div V = −4φtX − φ

γ−1
tX < 0,

and the left hand side in the inequality (6.7) is non-positive, which in view of the
definition of G contradicts the minimality of u (see (6.4)).

To compute div V at a point (z0, φ(z0)), let

Dϕ := {0 < φ(x)− εϕ(x) < xn+1 < φ(x), x ∈ Bδ(z0)}
with ϕ(z0) > 0 and ϕ a smooth bump function supported on Bδ(z0) ⊂ {ϕ > 0}.
Then, by a similar computation as above,ˆ

Dϕ

div V dX =

ˆ
Γφ

G(φ, νφ) dσ −
ˆ

Γφ−εϕ

G((φ− ηϕ), νφ−εϕ) dσ +O(ε2),

where we used that if xn+1 = φ(x)− εϕ(x) = φt(x), then νφ−εϕ(x) = νφt(x) +O(ε)
and by the homogeneity and C2 smoothness of G

G(xn+1, νφ−εϕ(x)) = ∇yG(xn+1, νφt(x)) · νφ−εϕ(x) +O(ε2).

Thus, for ε small,ˆ
Dϕ

div V dX =

ˆ
Bδ(z0)

(
1

2
|∇φ|2 +W (φ)

)
dx

−
ˆ
Bδ(z0)

(
1

2
|∇(φ− εϕ|2 +W (φ− εϕ)

)
dx+O(ε2)

=ε

ˆ
Bδ(z0)

(
∇φ · ∇ϕ− φγ−1ϕ

)
dx+O(ε2)

=ε

ˆ
Bδ(z0)

(
−∆φ− φγ−1

)
ϕdx+O(ε2).

We divide by ε and let ε→ 0 and then δ → 0. Since |Dϕ| = ε
´
ϕdx, and Dϕ tends

to (z0, φ(z0)), we conclude that at (z0, φ(z0))

div V = −∆φ− φγ−1.

The desired conclusion follows since φ is a subsolution.
�

Future directions. Some further directions for the study of the Alt-Phillips
problem could be

a) the two-phase setting
b) developing the gradient flow theory
c) the p-Laplace setting
d) classification of global stable solutions in low dimensions
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