Symmetry and uniqueness via a variational approach

Talk 1: applications to aggregation-diffusion equation

Yao Yao National University of Singapore

PDE Summer School, UC Irvine Jun 23, 2025

The Keller-Segel equation

 The Keller-Segel equation models the collective motion of cells attracted by a self-emitted chemical substance. The parabolic-elliptic Keller-Segel equation in 2D is

$$\rho_t = \Delta \rho + \nabla \cdot (\rho \nabla (\mathcal{N} * \rho)),$$

where $\mathcal{N} = \frac{1}{2\pi} \log |x|$ is the Newtonian potential in \mathbb{R}^2 .

(Patlak '53, Keller-Segel '71)

- There exists a "critical mass" $M_c = 8\pi$ such that:
 - $M > 8\pi$: All solutions with initially bounded second moment must blow up in finite time.

```
(Biler-Nadzieja '94, Nagai '01, Blanchet-Dolbeault-Perthame '06, Collot-Ghoul-Masmoudi-Nguyen '21)
```

• $M < 8\pi$: Solutions remain bounded globally in time, and converge to a self-similar solution with the heat equation scaling.

(Jager-Luckhaus '92, Dolbeault-Perthame '04, Blanchet-Dolbeault-Perthame '06)

► $M=8\pi$: No blow-up, but solutions with initially bounded second moment will aggregate as $t\to\infty$.

(Biler-Karch-Laurençot-Nadzieja '06, Blanchet-Carrillo-Masmoudi '08, Blanchet-Carlen-Carrillo '12, Carlen-Figalli '13)

Aggregation equation with (degenerate) diffusion

In this talk, we consider

$$\rho_t = \underbrace{\Delta \rho^m}_{\text{local repulsion}} + \underbrace{\nabla \cdot (\rho \nabla (W * \rho))}_{\text{nonlocal interaction}} \quad \text{in } \mathbb{R}^d,$$

where $m \ge 1$, W is radially symmetric, and W(r) is increasing. (So W is an attractive interaction potential).

- ullet The nonlinear diffusion term with m>1 models the anti-overcrowding effect. (Boi-Capasso-Morale '00, Topaz-Bertozzi-Lewis '06)
- The global well-posedness v.s. blow-up criteria has been well studied. (e.g. If $W=\mathcal{N}$, then $m>2-\frac{2}{d}$ leads to global existence, whereas solution may blow-up if $m<2-\frac{2}{d}$.) (Blanchet-Carrillo-Laurencot '09, Bedrossian-Rodriguez-Bertozzi '11)
- In the cases that well-posedness is known, long time behavior of solution remains unclear.

Free energy functional

• The associated free energy functional plays an important role:

$$E[\rho] = \underbrace{\frac{1}{m-1} \int \rho^m dx}_{=:S[\rho] \text{ (entropy)}} + \underbrace{\frac{1}{2} \int \rho(\rho*W) dx}_{=:I[\rho] \text{ (interaction energy)}}.$$

(When m = 1, the first term becomes $\int \rho \log \rho dx$).

Formally taking time derivatives along a solution, we have

$$\frac{d}{dt}E[\rho] = -\int \rho \left| \nabla \left(\frac{m}{m-1} \rho^{m-1} + \rho * W \right) \right|^2 dx \le 0.$$

 Formally, the solution is a gradient flow of E in the metric space endowed by the 2-Wasserstein distance. (But rigorously justifying this requires certain convexity of W).

(Villani'03, Ambrosio-Gigli-Savare '08, Craig '17)

Scaling argument for the free energy

Using a scaling argument, one can *formally* see whether there should be global existence or finite-time blow-up.

Below is the argument for Newtonian potential (one can also apply it to a general power-law kernel).

$$E[\rho] = \underbrace{\frac{1}{m-1} \int \rho^m dx}_{=:S[\rho] \text{ (entropy)}} + \underbrace{\frac{1}{2} \int \rho(\rho * \mathcal{N}) dx}_{=:I[\rho] \text{ (interaction energy)}}.$$

As we replace ρ by $\rho_{\lambda} := \lambda^{d} \rho(\lambda x)$:

- $S[\rho_{\lambda}] = \lambda^{(m-1)d} S[\rho].$
- Since $\mathcal{N}(x) = c_d |x|^{2-d}$, we have $I[\rho_{\lambda}] = \lambda^{d-2} I[\rho]$.

Thus the equation has the following three regimes:

- $m = m_c := 2 2/d$: fair competition case. (Note that when d = 2, we have $m_c = 1$).
- $m > m_c$: diffusion-dominated when $\lambda \gg 1$.
- $m < m_c$: aggregation-dominated when $\lambda \gg 1$.

Well-posedness and dynamics of solution

The above formal argument can be made rigorous using the HLS inequality

$$\int \rho(\rho * \mathcal{N}) dx \leq C_d M^{2/d} \int \rho^{m_c} dx,$$

and it also yields a critical mass M_c in the fair competition case.

For each regime, the following is known:

• $m>m_c$: for any $\rho_0\in L^1\cap L^\infty(\mathbb{R}^d)$, solution exists globally in time, and the L^∞ norm stays uniformly bounded in time.

```
(Sugiyama '06, Carrillo-Calvez '06)

Open question: Long time behavior of solutions re
```

Open question: Long time behavior of solutions remain unclear. (Will discuss in more details later.)

• $m < m_c$: For any M > 0, there exists solutions that blow-up in finite time. Meanwhile, solutions with sufficiently small initial data dissipate with the porous medium equation scaling.

```
(Sugiyama '06, Bedrossian '11, Bian-Liu '13, Chen-Liu-Wang '14)
```

- $m = m_c$: there is a critical mass M_c (depending only on d), such that:
 - If $M < M_c$, solutions are bounded globally in time, and there exists self-similar solutions that dissipate with the porous medium equation scaling.

(Blanchet-Carrillo-Laurençot '09, Bedrossian '11)

► If M > M_c, all radial solutions blow up in finite time. (Bedrossian-Kim '13)

Open question: Must all non-radial solutions blow-up in finite time too?

▶ If $M = M_c$, there is a family of compactly supported stationary solutions that are scalings of each other. Every radial solution with compact support will converge to some stationary solution.

```
(Blanchet-Carrillo-Laurençot '09, Y. '14)
```

Open question: What about dynamics for non-radial solutions with mass $M=M_{\rm c}$?

Main questions

Below we focus on the diffusion-dominated regime where blow-up doesn't happen. In order to understand the long-time dynamics, a key step is to identify the stationary solutions.

Question

- For a given mass, does there exist a stationary solution?
- ② Are they necessarily radially symmetric (up to a translation)?
- If so, is it unique within the radial class?
- If yes, is it the global attractor of the dynamics?

Question 1 already have a satisfactory answer:

- For a given mass, the global minimizer of $E[\rho] = \frac{1}{m-1} \int \rho^m dx + \frac{1}{2} \int \rho(\rho * W) dx$ is a stationary solution.
- Existence can be obtained by a concentration-compactness argument (Lieb-Oxford '81, Lions '84, Bedrossian '11, Carrillo-Delgadino-Patacchini '18).
- By Riesz rearrangement inequality, the *global minimizer* of *E* must be radially decreasing.

Thank you for your attention!