Symmetry and uniqueness via a variational approach

Talk 2: applications to aggregation-diffusion equation (cont.)

Yao Yao National University of Singapore

PDE Summer School, UC Irvine Jun 24, 2025

Aggregation equation with (degenerate) diffusion

Consider the aggregation-diffusion equation

$$\rho_t = \underbrace{\Delta \rho^m}_{\text{local repulsion}} + \underbrace{\nabla \cdot (\rho \nabla (W * \rho))}_{\text{nonlocal interaction}} \quad \text{in } \mathbb{R}^d,$$

where $m \ge 1$, W is radially symmetric, and W(r) is increasing. (So W is an attractive interaction potential).

• The associated free energy functional plays an important role:

$$E[\rho] = \underbrace{\frac{1}{m-1} \int \rho^m dx}_{=:S[\rho] \text{ (entropy)}} + \underbrace{\frac{1}{2} \int \rho(\rho * W) dx}_{=:I[\rho] \text{ (interaction energy)}}.$$

(When m = 1, the first term becomes $\int \rho \log \rho dx$).

- Last time: all global minimizers are radially decreasing up to a translation.
- Today: What about critical points?

Symmetric or not?

Question

Must every stationary solution be radial? It doesn't need to be a global minimizer!

We give a positive answer for all attractive kernels W that is no more singular than Newtonian (which was later generalized to more singular kernels by Carrillo-Hoffmann-Mainini-Volzone '18):

Theorem (Carrillo-Hittmeir-Volzone-Y., '19)

Let W be an attractive potential that is no more singular than Newtonian kernel. Any stationary solution $\rho_s \in L^1_+(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$ must be radially decreasing up to a translation.

Key idea: If ρ_s is non-radial up to a translation, it can't be a critical point of

$$E[\rho] = \frac{1}{m-1} \int \rho^m dx + \frac{1}{2} \int \rho(\rho * W) dx.$$

Sketch of the symmetry proof

• Assuming a stationary solution ρ_s is non-radial, we perturb it using its continuous Steiner symmetrization:

• Since $\int \rho_s^m = \int (\rho^\epsilon)^m$, and interaction energy decreases in the first order for a short time (need some work to check this!),

$$E_m[\rho^\epsilon] - E_m[\rho_s] < -c\epsilon \quad \text{ for all sufficiently small } \epsilon > 0,$$

where c > 0 depending on ρ_s and W.

- If the equation has a rigorous gradient flow formulation, the above argument implies that $|\partial E|[\rho_s] \ge c$, directly leading to a contradiction.
- If there is no rigorous gradient flow formulation (which is the case for most kernels with singularity at origin), we need to manually derive a contradiction and it gets a lot more technical!

Unique or not?

Question

For attractive kernels, for a given mass, are steady states unique?

Uniqueness results are only known in the following cases:

- For Newtonian potentials, in the diffusion-dominated regime: (Lieb-Yau '87, Kim-Yao '12, Carrillo-Castorina-Volzone '15)
- For Riesz potentials, in the diffusion-dominated regime: (Carrillo-Hoffmann-Mainini-Volzone '18, Calvez-Carrillo-Hoffmann '19, Chan-Gonzalez-Huang-Mainini-Volzone '20)
- For convex potential W (McCann '97)
- For the special power m=2 and W is a C^2 attractive potential. (Burger–Di Francesco–Franek '13, Kaib '17)

Uniqueness for $m \ge 2$

Theorem (Delgadino-Yan-Y., '22)

Let $m \geq 2$ and $W \in C^1(\mathbb{R}^d \setminus \{0\})$ be an attractive potential with $W'(r) \lesssim r^{-d-1+\delta}$ for some $\delta > 0$ for all $r \in (0,1)$. Then there is at most one steady state (up to a translation) for any given mass .

Idea of proof (when the gradient flow structure is rigorous):

- Stationary solutions are critical points of the energy functional.
- For $m \ge 2$, if ρ_0 , ρ_1 are two radial stationary solutions with the same mass, we will construct a curve $\{\rho_t\}_{t=0}^1$ connecting them, such that the energy along this curve is strictly convex.
- Therefore ρ_0 and ρ_1 can't be both critical points!

But how to find such an interpolation curve?

(Note: linear interpolation or 2-Wasserstein geodesic do not work!)

Construction of the interpolation curve

- Suppose ρ_0 , ρ_1 are two radially decreasing step functions having N horizontal layers with mass 1/N in each layer.
- ho_t is constructed by deforming each layer so that its height changes linearly, and meanwhile adjust the width so that the mass in each layer remains constant.

- Note that ρ_t is neither the linear interpolation between ρ_0 and ρ_1 , nor the geodesic in 2-Wasserstein metric.
- \bullet For two radially decreasing function, the interpolation can be seen as a $N\to\infty$ limit of the step-function case.

Construction of the interpolation curve

• For a radially decreasing function ρ with mass 1, define its "height function with respect to mass" h(s) as the left figure:

• ρ can be uniquely recovered from h (see the right figure):

$$\rho(x) = \int_0^1 1_{B(0,(c_dh'(s))^{-1/d})}(x)h'(s)ds$$

• Let h_0, h_1 be the height function for ρ_0, ρ_1 . For $t \in (0,1)$, let

$$h_t(s) = (1-t)h_0(s) + th_1(s),$$

and let ρ_t be determined by the height function h_t .

Convexity of energy

• For the entropy, an explicit computation gives

$$S[\rho] = \int_{\mathbb{R}^d} \frac{1}{m-1} \rho^m dx$$

$$= \int_0^{\max \rho} \frac{m}{m-1} h^{m-1} |\{\rho > h\}| dh$$

$$= \int_0^1 \frac{m}{m-1} h(s)^{m-1} ds,$$

thus

$$\frac{d^2}{dt^2}S[\rho_t] = m(m-2)\int_0^1 (h_1 - h_0)^2 h_t(s)^{m-3} ds,$$

which is non-negative if and only if $m \ge 2$.

• The interaction energy $I[\rho] = \int \rho(\rho * W) dx$ is strictly convex along the curve for all attractive potential W, but the proof is more technical.

Non-uniqueness for 1 < m < 2

For all m < 2, our uniqueness proof fails. But is there really non-uniqueness in this regime?

Theorem (Delgadino-Yan-Y., '22)

Let 1 < m < 2. There exists a smooth attractive kernel W which gives an infinite sequence of radially decreasing stationary solutions with the same mass.

• It shows that the uniqueness result for $m \ge 2$ is indeed sharp.

• Claim: If k > 0 is sufficiently small, then it leads to a different stationary solution from ρ_s .

Scaling argument for integrable kernels

Reason: If k=0, then W becomes an integrable attractive kernel. For such kernel, a heuristic scaling argument shows a sufficiently flat initial data should continue spreading for $1 \le m < 2$:

As we replace ρ by $\rho_{\lambda} := \lambda^{d} \rho(\lambda x)$, the entropy and interaction energy scales as follows as $\lambda \to 0$:

$$S[\rho_{\lambda}] = \lambda^{(m-1)d} S[\rho] = \frac{\lambda^{(m-1)d}}{m-1} \int \rho^{m} dx,$$

$$I[\rho_{\lambda}] \rightarrow \frac{\lambda^d}{2} \|W\|_{L^1} \int \rho^2 dx + o(\lambda^d).$$

Thus we formally expect the following:

- m=2 (critical power): here both terms scale the same as $\lambda \to 0$.
- $1 \le m < 2$: $E[\rho_{\lambda}] > 0$ for sufficiently small $\lambda > 0$. (i.e. It is energy favorable for a sufficiently flat initial data to spread more.)
- m > 2: $E[\rho_{\lambda}] < 0$ for sufficiently small $\lambda > 0$.

Leading to non-uniqueness

- Let 1 < m < 2. To rigorously justify the heuristics, we use a standard energy estimate to track the evolution of L^{3-m} norm of a solution.
- We show if $0 < k \ll 1$ and $\|\rho_0\|_{3-m} \le \frac{\|\rho_s\|_{3-m}}{2}$, then $\|\rho(t)\|_{3-m}$ is bounded by $\frac{\|\rho_s\|_{3-m}}{2}$ for all times, so $\rho(t)$ can never return to ρ_s .

- But $\{\rho(t)\}_{t>0}$ must remain tight, since $W(r) \sim kr$ for $r \gg 1$, implying the first moment of $\rho(t)$ is uniformly bounded in time.
- Uniform-in-time L^{3-m} bounds + tightness + energy dissipation \Rightarrow existence of a new stationary solution.

Infinite sequence of stationary solutions

 Finally, an iterative procedure allows us to construct a kernel with an infinite number of stationary solutions (all with the same mass, and radially decreasing).

Open questions

Question

For a given mass, are stationary solutions unique when m = 1?

• They are still known to be radially decreasing, but both our uniqueness and non-uniqueness proofs fail in the m=1 case.

Question

When m > 2, does the solution converge to the unique stationary solution with the same mass and center of mass as the initial data?

- Difficulty: need to show mass can't escape to infinity.
- Some recent progress by Ruiwen Shu '20 in 1D and 2D for large m.

Thank you for your attention!