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Aggregation equation with (degenerate) diffusion

o Consider the aggregation-diffusion equation

pr = + V- (pV(W xp)) inRY,
—_——
nonlocal interaction

where m > 1, W is radially symmetric, and W(r) is increasing.
(So W is an attractive interaction potential).

@ The associated free energy functional plays an important role:

1
Elp] = + 5/0(0* W)dx .
— —mm————
=:I[p] (interaction energy)
(When m = 1, the first term becomes [ plog pdx).
@ Last time: all global minimizers are radially decreasing up to a translation.

@ Today: What about critical points?



Symmetric or not?

Question
Must every be radial? It doesn’t need to be a /

We give a positive answer for all attractive kernels W that is no more singular
than Newtonian (which was later generalized to more singular kernels by
Carrillo-Hoffmann-Mainini-Volzone '18):

Theorem (Ca rrillo-Hittmeir-Volzone-Y., '19)

Let W be an attractive potential that is no more singular than Newtonian kernel.
Any stationary solution ps € L1 (RY) N L>°(R9) must be radially decreasing up to
a translation.

Key idea: If ps is non-radial up to a translation, it can't be a critical point of

1 1
Elp] = m/ﬁ’"dxﬂL §/p(p* W)dx.



Sketch of the symmetry proof

@ Assuming a stationary solution ps is non-radial, we perturb it using its
continuous Steiner symmetrization:

)

e Since [pT = [(p)™, and interaction energy decreases in the first order for a
short time (need some work to check this!),

2y

Emlp®] — Em[ps] < —ce  for all sufficiently small ¢ > 0,

where ¢ > 0 depending on ps and W.

° , the above argument
implies that |OE|[ps] > ¢, directly leading to a contradiction.

o If there is no rigorous gradient flow formulation (which is the case for most
kernels with singularity at origin), we need to manually derive a contradiction
and it gets a lot more technical!



Unique or not?

Question

For attractive kernels, for a given mass, are steady states unique?

Uniqueness results are only known in the following cases:

o For , in the diffusion-dominated regime: (Lieb—Yau '87,
Kim—-Yao '12, Carrillo—Castorina—Volzone '15)

e For , in the diffusion-dominated regime:
(Carrillo-Hoffmann—Mainini-Volzone '18, Calvez—Carrillo-Hoffmann '19,
Chan-Gonzalez—Huang—Mainini—Volzone '20)

e For W (McCann '97)

@ For the special power and W is a C? attractive potential. (Burger-Di
Francesco—Franek '13, Kaib '17)



Uniqueness for m > 2

Theorem (Delgadino-Yan-Y., '22)

Let and W € CY(R9\ {0}) be an attractive potential with
W'(r) < r=9=1*9 for some § > 0 for all r € (0,1). Then there is
(up to a translation) for any given mass .

Idea of proof (when the gradient flow structure is rigorous):
@ Stationary solutions are of the energy functional.

@ For m > 2, if po, p1 are two radial stationary solutions with the same mass, we will
construct a curve {p;}i_o connecting them, such that the

@ Therefore pp and p1 can’t be both critical points!

But how to find such an interpolation curve?
(Note: linear interpolation or 2-Wasserstein geodesic do not work!)



Construction of the interpolation curve

@ Suppose pg, p1 are two radially decreasing step functions having N horizontal

layers with mass 1/N in each layer.

@ p; is constructed by deforming each layer so that its height changes linearly,
and meanwhile adjust the width so that the mass in each layer remains

constant.
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@ Note that p; is neither the linear interpolation between pg and p;, nor the
geodesic in 2-Wasserstein metric.

@ For two radially decreasing function, the interpolation can be seen as a
N — oo limit of the step-function case.



Construction of the interpolation curve

o For a radially decreasing function p with mass 1, define its “height function
with respect to mass” h(s) as the left figure:

@ p can be uniquely recovered from h (see the right figure):

1
o) = [ Lot et oI (5)ds
@ Let hg, hy be the height function for pg, p1. For t € (0,1), let
ht(S) = (1 - t)ho(S) + thl(S),

and let p; be determined by the height function h;.



Convexity of energy

@ For the entropy, an explicit computation gives

Slel = / L _pmd

max p m
= 7h"’ 1 h}|dh
=[S e >

1
m
= [ ——h(s)"d
o m—1 (s) S

1
thee oSl = m(m2) [ (b~ o) s

which is non-negative if and only if m > 2.

o The interaction energy I[p] = [ p(p * W)dx is strictly convex along the curve
for all attractive potential W, but the proof is more technical.



Non-uniqueness for 1 < m < 2
For all m < 2, our uniqueness proof fails. But is there really non-uniqueness in

this regime?

Theorem (Delgadino-Yan-Y., '22)

Let 1 < m < 2. There exists a smooth attractive kernel W which gives an infinite
sequence of radially decreasing stationary solutions with the same mass.

@ It shows that the uniqueness result for m > 2 is indeed sharp.

slope =k <« 1
w(r) -
Ps Ps =T
— .
new steady state
R r R 2R 3R r

o Claim: If k > 0 is sufficiently small, then it leads to a different stationary
solution from ps.



Scaling argument for integrable kernels

Reason: If k =0, then W becomes an attractive kernel. For such
kernel, a heuristic scaling argument shows

As we replace p by px := A9p()\x), the entropy and interaction energy scales as
pbyp

follows as A — 0:
m
d
[

/\d
llpal = S I Wl / R+ o(\).

Sleal = Slp] =

Thus we formally expect the following:

e m = 2 (critical power): here both terms scale the same as A — 0.

e 1< m<2: E[py] > 0 for sufficiently small A > 0.
(i.e. It is energy favorable for a sufficiently flat initial data to spread more.)
e m>2: E[p,] < 0 for sufficiently small A > 0.



Leading to non-uniqueness

@ Let 1 < m < 2. To rigorously justify the heuristics, we use a standard energy
estimate to track the evolution of L3=™ norm of a solution.

e We show if 0 < k < 1 and [|pg|[3—m < %, then ||p(t)|l3—m is bounded

by % for all times, so p(t) can never return to ps.

lp() I3

llpsll3—m

H/’UHS*W /\_/_

t
@ But {p(t)}t>0 must remain tight, since W(r) ~ kr for r > 1, implying the
first moment of p(t) is uniformly bounded in time.

@ Uniform-in-time L3~™ bounds + tightness + energy dissipation = existence
of a new stationary solution.



Infinite sequence of stationary solutions

o Finally, an iterative procedure allows us to construct a kernel with an infinite
number of stationary solutions (all with the same mass, and radially
decreasing).
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Open questions

Question

For a given mass, are stationary solutions unique when m =17

@ They are still known to be radially decreasing, but both our uniqueness and
non-uniqueness proofs fail in the m = 1 case.

Question

When m > 2, does the solution converge to the unique stationary solution with
the same mass and center of mass as the initial data?

o Difficulty: need to show mass can't escape to infinity.
@ Some recent progress by Ruiwen Shu '20 in 1D and 2D for large m.



Thank you for your attention!



