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Aggregation equation with (degenerate) diffusion

Consider the aggregation-diffusion equation

ρt = ∆ρm︸︷︷︸
local repulsion

+∇ · (ρ∇(W ∗ ρ))︸ ︷︷ ︸
nonlocal interaction

in Rd ,

where m ≥ 1, W is radially symmetric, and W (r) is increasing.
(So W is an attractive interaction potential).

The associated free energy functional plays an important role:

E [ρ] =
1

m − 1

ˆ
ρmdx︸ ︷︷ ︸

=:S[ρ] (entropy)

+
1

2

ˆ
ρ(ρ ∗W )dx︸ ︷︷ ︸

=:I [ρ] (interaction energy)

.

(When m = 1, the first term becomes
´
ρ log ρdx).

Last time: all global minimizers are radially decreasing up to a translation.

Today: What about critical points?



Symmetric or not?

Question
Must every stationary solution be radial? It doesn’t need to be a global minimizer!

We give a positive answer for all attractive kernels W that is no more singular
than Newtonian (which was later generalized to more singular kernels by
Carrillo-Hoffmann-Mainini-Volzone ’18):

Theorem (Carrillo-Hittmeir-Volzone-Y., ’19)

Let W be an attractive potential that is no more singular than Newtonian kernel.
Any stationary solution ρs ∈ L1+(Rd) ∩ L∞(Rd) must be radially decreasing up to
a translation.

Key idea: If ρs is non-radial up to a translation, it can’t be a critical point of

E [ρ] =
1

m − 1

ˆ
ρmdx +

1

2

ˆ
ρ(ρ ∗W )dx .



Sketch of the symmetry proof

Assuming a stationary solution ρs is non-radial, we perturb it using its
continuous Steiner symmetrization:

ρs ρε

x1

Since
´
ρms =

´
(ρε)m, and interaction energy decreases in the first order for a

short time (need some work to check this!),

Em[ρε]− Em[ρs ] < −cε for all sufficiently small ε > 0,

where c > 0 depending on ρs and W .

If the equation has a rigorous gradient flow formulation, the above argument
implies that |∂E |[ρs ] ≥ c , directly leading to a contradiction.

If there is no rigorous gradient flow formulation (which is the case for most
kernels with singularity at origin), we need to manually derive a contradiction
and it gets a lot more technical!



Unique or not?

Question
For attractive kernels, for a given mass, are steady states unique?

Uniqueness results are only known in the following cases:

For Newtonian potentials, in the diffusion-dominated regime: (Lieb–Yau ’87,

Kim–Yao ’12, Carrillo–Castorina–Volzone ’15)

For Riesz potentials, in the diffusion-dominated regime:
(Carrillo–Hoffmann–Mainini–Volzone ’18, Calvez–Carrillo–Hoffmann ’19,
Chan–Gonzalez–Huang–Mainini–Volzone ’20)

For convex potential W (McCann ’97)

For the special power m = 2 and W is a C 2 attractive potential. (Burger–Di
Francesco–Franek ’13, Kaib ’17)



Uniqueness for m ≥ 2

Theorem (Delgadino–Yan–Y., ’22)

Let m ≥ 2 and W ∈ C 1(Rd \ {0}) be an attractive potential with
W ′(r) . r−d−1+δ for some δ > 0 for all r ∈ (0, 1). Then there is at most one
steady state (up to a translation) for any given mass .

Idea of proof (when the gradient flow structure is rigorous):

Stationary solutions are critical points of the energy functional.

For m ≥ 2, if ρ0, ρ1 are two radial stationary solutions with the same mass, we will
construct a curve {ρt}1t=0 connecting them, such that the energy along this curve is
strictly convex.

Therefore ρ0 and ρ1 can’t be both critical points!

But how to find such an interpolation curve?
(Note: linear interpolation or 2-Wasserstein geodesic do not work!)



Construction of the interpolation curve

Suppose ρ0, ρ1 are two radially decreasing step functions having N horizontal
layers with mass 1/N in each layer.

ρt is constructed by deforming each layer so that its height changes linearly,
and meanwhile adjust the width so that the mass in each layer remains
constant.

ρ0 ρ1ρt

a0

b0 b1

a1
(1− t)a0 + ta1

(1− t)b0 + tb1

mass=1/2

mass=1/2 mass=1/2

mass=1/2
mass=1/2

mass=1/2

Note that ρt is neither the linear interpolation between ρ0 and ρ1, nor the
geodesic in 2-Wasserstein metric.

For two radially decreasing function, the interpolation can be seen as a
N →∞ limit of the step-function case.



Construction of the interpolation curve

For a radially decreasing function ρ with mass 1, define its “height function
with respect to mass” h(s) as the left figure:

mass = s h(s)

ρ(x)

mass = s h(s)

ρ(x)

(cnh′(s))−1/n

mass = ds h′(s)ds

ρ can be uniquely recovered from h (see the right figure):

ρ(x) =

ˆ 1

0

1B(0,(cdh′(s))−1/d )(x)h′(s)ds

Let h0, h1 be the height function for ρ0, ρ1. For t ∈ (0, 1), let

ht(s) = (1− t)h0(s) + th1(s),

and let ρt be determined by the height function ht .



Convexity of energy

For the entropy, an explicit computation gives

S [ρ] =

ˆ
Rd

1

m − 1
ρmdx

=

ˆ max ρ

0

m

m − 1
hm−1|{ρ > h}|dh

=

ˆ 1

0

m

m − 1
h(s)m−1ds,

thus d2

dt2
S [ρt ] = m(m − 2)

ˆ 1

0

(h1 − h0)2ht(s)m−3ds,

which is non-negative if and only if m ≥ 2.

The interaction energy I [ρ] =
´
ρ(ρ ∗W )dx is strictly convex along the curve

for all attractive potential W , but the proof is more technical.



Non-uniqueness for 1 < m < 2

For all m < 2, our uniqueness proof fails. But is there really non-uniqueness in
this regime?

Theorem (Delgadino–Yan–Y., ’22)

Let 1 < m < 2. There exists a smooth attractive kernel W which gives an infinite
sequence of radially decreasing stationary solutions with the same mass.

It shows that the uniqueness result for m ≥ 2 is indeed sharp.

r2R 3R

slope ≡ k � 1

R

ρs

new steady state

r

W (r)

R

ρs

=⇒

Claim: If k > 0 is sufficiently small, then it leads to a different stationary
solution from ρs .



Scaling argument for integrable kernels

Reason: If k = 0, then W becomes an integrable attractive kernel. For such
kernel, a heuristic scaling argument shows a sufficiently flat initial data should
continue spreading for 1 ≤ m < 2:

As we replace ρ by ρλ := λdρ(λx), the entropy and interaction energy scales as
follows as λ→ 0:

S [ρλ] = λ(m−1)dS [ρ] =
λ(m−1)d

m − 1

ˆ
ρmdx ,

I [ρλ]→ λd

2
‖W ‖L1

ˆ
ρ2dx + o(λd).

Thus we formally expect the following:

m = 2 (critical power): here both terms scale the same as λ→ 0.

1 ≤ m < 2: E [ρλ] > 0 for sufficiently small λ > 0.
(i.e. It is energy favorable for a sufficiently flat initial data to spread more.)

m > 2: E [ρλ] < 0 for sufficiently small λ > 0.



Leading to non-uniqueness

Let 1 < m < 2. To rigorously justify the heuristics, we use a standard energy
estimate to track the evolution of L3−m norm of a solution.

We show if 0 < k � 1 and ‖ρ0‖3−m ≤ ‖ρs‖3−m

2 , then ‖ρ(t)‖3−m is bounded

by ‖ρs‖3−m

2 for all times, so ρ(t) can never return to ρs .

t

‖ρ(t)‖3−m
‖ρs‖3−m

‖ρs‖3−m

2

‖ρ0‖3−m

But {ρ(t)}t>0 must remain tight, since W (r) ∼ kr for r � 1, implying the
first moment of ρ(t) is uniformly bounded in time.

Uniform-in-time L3−m bounds + tightness + energy dissipation ⇒ existence
of a new stationary solution.



Infinite sequence of stationary solutions

Finally, an iterative procedure allows us to construct a kernel with an infinite
number of stationary solutions (all with the same mass, and radially
decreasing).

R1
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r
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Open questions

Question
For a given mass, are stationary solutions unique when m = 1?

They are still known to be radially decreasing, but both our uniqueness and
non-uniqueness proofs fail in the m = 1 case.

Question
When m > 2, does the solution converge to the unique stationary solution with
the same mass and center of mass as the initial data?

Difficulty: need to show mass can’t escape to infinity.

Some recent progress by Ruiwen Shu ’20 in 1D and 2D for large m.



Thank you for your attention!


