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What’s the shape of my planet?

Let’s start with the following example (seemingly unrelated to fluids):

The little prince wants to know the shape of his planet D ⊂ Rn.

Somehow, the only thing he can measure is the gravitational potential 1D ∗ N at
each point on the surface.

After years of hard work, he found (1D ∗ N )(x) = const on ∂D.

Question: Must D be a ball?

It turns out this question is closely related to stationary vortex patches!



2D incompressible Euler equation

2D Euler equation in vorticity form:

ωt + u · ∇ω = 0,

with Biot-Savart law u = ∇⊥(ω ∗ N ), where N = 1
2π log |x | is the Newtonian

potential in 2D.

The global regularity for smooth initial data has long been established since
works of Wolibner ’33 and Hölder ’33.

Global well-posedness is also established for weak solution with
ω0 ∈ L1 ∩ L∞: Yudovich ’63, with ω(x , t) = ω0(φ−1(t, x)).

A patch solution has ω0 = 1D , with D being a bounded domain. We then
have ω(x , t) = 1Dt , with Dt = φ(t,D).

Global regularity of patches in C 1,γ is first proved by Chemin ’93, and a
shorter proof is given by Bertozzi–Constantin ’93.



Solutions whose shape remains unchanged in time

Instead of the dynamical solutions, our focus will be the solutions whose
shape remains unchanged in time.

These include the stationary solutions, as well as uniformly-rotating solutions.

D is a stationary patch ⇐⇒ 1D ∗ N = const on each component of ∂D.

D is a uniformly-rotating patch with angular velocity Ω ⇐⇒
1D ∗ N − Ω

2 |x |
2 = const on each component of ∂D.

Rotating hexagon on the north pole of Saturn.
Source: Wikipedia



Symmetric or not?

Simple observation: Any radially symmetric patch D satisfies the equation of
rotating patch for any Ω ∈ R.

Question

Under what condition must a stationary/rotating patch be radially symmetric?

Positive answer in the following cases: if ω0 = 1D , then

Fraenkel ’00: If D is simply-connected and Ω = 0, it must be a disk. Proof
based on the moving plane method.

Hmidi ’14: If D is convex and Ω < 0, it must be a disk.

Hmidi ’14: If D is simply-connected and Ω = 1/2, it must be a disk.

0 1
2 Ω???

simply-connected patch
must be a disk

simply-connected patch
must be a disk

convex patch
must be a disk



Non-radial uniformly rotating solutions

Kirchhoff vortex (1876): any ellipse of semiaxis a, b is a rotating patch with
Ω = ab

(a+b)2 .

Deem–Zabusky ’78: numerical evidence of rotating patches with m-fold
symmetry.

Burbea ’82 proved that there exists a family of m-fold rotating patches
bifurcating from the disk at Ω = m−1

2m . (m = 2 gives Kirchhoff ellipses.)

Boundary regularity: Hmidi–Mateu-Verdera’13,
Castro–Córdoba–Gómez-Serrano’15

Other perspectives: bifurcation from doubly-connected patch; pairs of
patches; secondary bifurcation; smooth rotating solution; stability...

0 1
2 Ω

m−1
2m



Open question: what’s at the end of the bifurcation curve?

0 1
2 Ω

m−1
2m

The global bifurcation is studied in Hassainia–Masmoudi–Wheeler ’17, where they
showed towards the end of the bifurcation curve, there are points on the boundary
whose angular fluid velocity becomes arbitrarily small.

Two intriguing open question remains for m ≥ 3:

Formation of 90◦ angle at the end of bifurcation curve?

Does “cat’s eye” persist along the bifurcation curve?

See some fascinating numerics at Miles Wheeler’s page:
https://www.mileshwheeler.com/patchnumerics.html

https://www.mileshwheeler.com/patchnumerics.html


No non-trivial patch for Ω ≤ 0 or Ω ≥ 1
2

Theorem (Gómez-Serrano, Park, Shi, and Y., ’21)

Let D be a stationary/rotating patch (not necessarily connected or
simply-connected) with angular velocity Ω.

If Ω < 0 or Ω ≥ 1/2, then D must be radially symmetric.

And if Ω = 0, then D is radial up to a translation.

0 1
2 Ω

m−1
2m

all patches must be radial

???

simply-connected patch
must be a disk

simply-connected patch
must be a disk

convex patch
must be a disk

all patches must be radial

Instead of moving plane method, our proof has a calculus-of-variation flavor.



Simply-connected patch are radial for Ω ≤ 0 or Ω ≥ 1
2

The proof is very short for simply-connected patch D. Towards a
contradiction, assume D is not a disk, and it is stationary/rotating with
Ω ∈ (−∞, 0] ∪ [ 1

2 ,∞).

Idea: Consider the first variation of the “energy functional”

E [D] = −
ˆ
R2

1

2
1D(1D ∗ N )− Ω

2
|x |21D dx

along a carefully chosen deformation of D.

For the transport equation ρt +∇ · (ρ~v) = 0 with initial data ρ(x , 0) = 1D ,
we have

d

dt
E [ρ]

∣∣∣
t=0

= −
ˆ
D

~v(x) · ∇
(

(1D ∗ N )(x)− Ω

2
|x |2︸ ︷︷ ︸

=:f (x)

)
dx =: I

On the one hand, using f = C on ∂D, divergence theorem gives I = 0 for
any smooth ~v with ∇ · ~v = 0 in D.



Perturbing D by a divergence-free vector field

On the other hand, if D is simply-connected and not a disk, we construct an
explicit smooth ~v with ∇ · ~v = 0 in D, and show that I 6= 0 if
Ω ∈ (−∞, 0] ∪ [1/2,∞).

We define ~v : D → R2 as

~v(x) := −~x −∇p,

where p solves the Poisson equation

{
∆p = −2 in D,

p = 0 on ∂D.

Note that ∇ · ~v = 0 in D.

−~x −∇p ~v = −~x −∇p



Obtaining a contradiction for Ω ≤ 0 or Ω ≥ 1
2

For such v , an explicit computation gives

I =

ˆ
D

x · ∇(1D ∗ N −
Ω

2
|x |2)dx +

ˆ
D

∇p · ∇fdx

=
1

4π
|D|2 − Ω

ˆ
D

|x |2dx + (2Ω− 1)

ˆ
D

pdx

For |D| fixed,
´
D
|x |2dx is minimized if and only if D is a disk.

Talenti ’76: If p solves ∆p = −2 in D with p = 0 on ∂D, we have

ˆ
D

p dx ≤ 1

4π
|D|2,

with “=” achieved if and only if D is a disk.

Combining them, we have I ≥ 0 if Ω ≤ 0, I ≤ 0 if Ω ≥ 1
2 , with “=”

achieved if and only if D is a disk.



Thank you for your attention!


