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Where we are so far

Recall: For 2D Euler, a rotating patch with angular velocity ⌦ satisfies

f (x) := 1D ⇤N � ⌦

2
|x |2 = const

on each connected component of @D (di↵erent constants on di↵erent
pieces).

Taking first variation of the “energy functional”

E [D] = �
ˆ
R2

1

2
1D(1D ⇤N )� ⌦

2
|x |21D dx

along any divergence-free vector field ~v in D, we have

d

dt
E [⇢]

���
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= �
ˆ
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⇣
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|x |2

| {z }
=:f (x)

⌘
dx =: I

For simply-connected D, using f = C on @D, divergence theorem gives
I = 0.



Perturbing D by a divergence-free vector field

On the other hand, if D is simply-connected and not a disk, we construct an
explicit smooth ~v with r · ~v = 0 in D, and show that I 6= 0 if
⌦ 2 (�1, 0] [ [1/2,1).

We define ~v : D ! R2 as

~v(x) := �~x �rp,

where p solves the Poisson equation
(
�p = �2 in D,

p = 0 on @D.

Note that r · ~v = 0 in D.



Obtaining a contradiction for ⌦  0 or ⌦ � 1
2

For such v , an explicit computation gives

I =

ˆ
D
x ·r(1D ⇤N � ⌦

2
|x |2)dx +

ˆ
D
rp ·rfdx

=
1

4⇡
|D|2 � ⌦

ˆ
D
|x |2dx + (2⌦� 1)

ˆ
D
pdx

For |D| fixed,
´
D |x |2dx is minimized if and only if D is a disk.

Talenti ’76: If p solves �p = �2 in D with p = 0 on @D, we have
ˆ
D
p dx  1

4⇡
|D|2,

with “=” achieved if and only if D is a disk.

Let’s prove Talenti’s rearrangement theorem! (on the board)

Combining them, we have I � 0 if ⌦  0, I  0 if ⌦ � 1
2 , with “=”

achieved if and only if D is a disk.



Dealing with non-simply-connected patches

If D is not simply-connected,

f = N ⇤ ! � ⌦

2
|x |2 = Ci on @Di , where Ci can be di↵erent.

So our first computation of I = 0 no longer holds!

To ensure I = 0, we require ~v be divergence free in D and satisfies´
@Di

~v · nd� = 0 for each @Di .

Idea: still let ~v = �~x �rp, but modify p into �p = �2 in D, p = ci on @Di

for suitable ci . Also need to modify the proof of Talenti’s theorem for such p.

Such modification gives us that any connected patch (not necessarily
simply-connected) must be radial for ⌦  0 or ⌦ � 1/2.



Stationary patch/smooth solution

For smooth stationary solutions we can also say the following:

Theorem (Gómez-Serrano, Park, Shi, and Y., ’21)

Assume ! is a smooth stationary solution with compact support (or fast decay at
infinity). If ! does not change sign, it must be radial up to a translation.

Idea of proof: approximate a smooth ! by step functions, then apply the

previous perturbation for each layer. (Need a quantitative version of Talenti’s

theorem!)

Note: If vorticity is allowed to change sign, one can construct nonradial

compactly-supported stationary solutions.

(Gómez-Serrano–Park–Shi ’21, Enciso–Fernández–Ruiz–Sicbaldi ’23).



SQG and generalized SQG

Consider the Biot-Savart law u = r?(��)�1+↵
2 ! = r?(K↵ ⇤ !), for ↵ 2 (0, 2).

(↵ = 0 ) 2D Euler; ↵ = 1 ) SQG)

A rotating patch D with angular velocity ⌦ satisfies

1D ⇤K↵ �
⌦

2
|x |2 = const on @D.

Existence of patch/smooth rotating solution (for some ⌦ > 0) given by
Castro–Córdoba–Gómez-Serrano ’16.

For 0 < ↵ < 5/3, all simply connected stationary patches are disks. (Reichel ’09, Lu–Zhu
’12, Choksi–Neumayer–Topaloglu ’18, moving plane method).

Non-simply-connected stationary patches are not necessarily radial: For ↵ 2 (0, 2),
Gómez-Serrano ’18 showed there exists non-radial stationary patches bifurcating from an
annulus.

0 (finite if 0 < ↵ < 1, ⌦

⌦↵
m

simply-connected stationary patch

must be a disk for ↵ 2 [0, 5
3 )

= +1 if 1  ↵ < 2)

there exists nonradial
non-simply-connected patch

⌦↵



Symmetry of stationary/rotating patches

Theorem (Gómez-Serrano, Park, Shi, and Y., ’21)

Let D be a simply-connected rotating patch to the gSQG equation with angular
velocity ⌦. Then:

For ↵ 2 (0, 2), if ⌦  0, the patch must be a disk.

For ↵ 2 (0, 1), there exists a constant ⌦↵ = 2↵�1 �(1�↵)
�(1�↵

2 )
2

�(1+↵
2 )

�(2�↵
2 )

(sharp and

explicit) such that if ⌦ � ⌦↵ the patch must be a disk.

0

(finite if 0 < ↵ < 1, ⌦

⌦↵
m

a simply-connected patch

simply-connected stationary patch
must be a disk for ↵ 2 [0, 5

3 )

must be a disk (0 < ↵ < 2)
a simply-connected patch
must be a disk (0 < ↵ < 1)

= +1 if 1  ↵ < 2)
there exists nonradial

non-simply-connected patch

⌦↵



Symmetry for ⌦  0 case

Known: 1D ⇤K↵ � ⌦
2 |x |

2 = const on @D.

Let E [D] := 1
2

´
1D(1D ⇤K↵)� ⌦

2 |x |
2dx .

Let us perturb D by continuous Steiner symmetrization, in a similar spirit as
Carrillo–Hittmeir–Volzone–Y. ’19.

{x1 = 0} {x1 = 0}

D S⌧ [D]
D

Under this perturbation, E [D] decreases to the first order of ⌧ , i.e.
E [S⌧ [D]]� E [D] < �c⌧ .

But using that 1D ⇤K↵ � 1
2⌦|x |

2 = C on @D, we also have
E [S⌧ [D]]� E [D] = o(⌧), a contradiction.



The overall story

If some steady state / rotating solutions are critical points of some associated
energy functional, one way to show symmetry/uniqueness is to build your
own purturbation / interpolation to decrease the energy by the first order.

There’s no universal method to build it though! Trials and errors are needed.

Disclaimer: only successful examples are shown;
failed attempts are hidden on purpose :)



Thank you for your attention!

Gradient flow at
Singapore airport!


