Symmetry and uniqueness via a variational approach

Day 4: application to 2D Euler & SQG equation

Yao Yao National University of Singapore

PDE Summer School, UC Irvine Jun 27, 2025

Where we are so far

ullet Recall: For 2D Euler, a rotating patch with angular velocity Ω satisfies

$$f(x) := 1_D * \mathcal{N} - \frac{\Omega}{2}|x|^2 = \text{const}$$

on each connected component of ∂D (different constants on different pieces).

Taking first variation of the "energy functional"

$$E[D] = -\int_{\mathbb{R}^2} \frac{1}{2} 1_D (1_D * \mathcal{N}) - \frac{\Omega}{2} |x|^2 1_D dx$$

along any divergence-free vector field \vec{v} in D, we have

$$\frac{d}{dt}E[\rho]\Big|_{t=0} = -\int_{D} \vec{v}(x) \cdot \nabla \Big(\underbrace{(1_{D} * \mathcal{N})(x) - \frac{\Omega}{2}|x|^{2}}_{=:f(x)}\Big) dx =: \mathcal{I}$$

• For simply-connected D, using f = C on ∂D , divergence theorem gives $\mathcal{I} = 0$.

Perturbing D by a divergence-free vector field

- On the other hand, if D is simply-connected and not a disk, we construct an explicit smooth \vec{v} with $\nabla \cdot \vec{v} = 0$ in D, and show that $\mathcal{I} \neq 0$ if $\Omega \in (-\infty, 0] \cup [1/2, \infty)$.
- We define $\vec{v}: \overline{D} \to \mathbb{R}^2$ as

$$\vec{v}(x) := -\vec{x} - \nabla p$$

where p solves the Poisson equation

$$\begin{cases} \Delta p = -2 & \text{in } D, \\ p = 0 & \text{on } \partial D. \end{cases}$$

• Note that $\nabla \cdot \vec{v} = 0$ in D.

Obtaining a contradiction for $\Omega \leq 0$ or $\Omega \geq \frac{1}{2}$

• For such v, an explicit computation gives

$$\mathcal{I} = \int_{D} x \cdot \nabla (1_{D} * \mathcal{N} - \frac{\Omega}{2} |x|^{2}) dx + \int_{D} \nabla p \cdot \nabla f dx$$
$$= \frac{1}{4\pi} |D|^{2} - \Omega \int_{D} |x|^{2} dx + (2\Omega - 1) \int_{D} p dx$$

- For |D| fixed, $\int_{D} |x|^2 dx$ is minimized if and only if D is a disk.
- Talenti '76: If p solves $\Delta p = -2$ in D with p = 0 on ∂D , we have

$$\int_{D} p \, dx \leq \frac{1}{4\pi} |D|^2,$$

with "=" achieved if and only if D is a disk.

- Let's prove Talenti's rearrangement theorem! (on the board)
- Combining them, we have $\mathcal{I} \geq 0$ if $\Omega \leq 0$, $\mathcal{I} \leq 0$ if $\Omega \geq \frac{1}{2}$, with "=" achieved if and only if D is a disk.

Dealing with non-simply-connected patches

• If *D* is not simply-connected,

$$f = \mathcal{N} * \omega - \frac{\Omega}{2} |x|^2 = C_i$$
 on ∂D_i , where C_i can be different.

So our first computation of $\mathcal{I} = 0$ no longer holds!

- To ensure $\mathcal{I}=0$, we require \vec{v} be divergence free in D and satisfies $\int_{\partial D_i} \vec{v} \cdot n d\sigma = 0$ for each ∂D_i .
- Idea: still let $\vec{v} = -\vec{x} \nabla p$, but modify p into $\Delta p = -2$ in D, $p = c_i$ on ∂D_i for suitable c_i . Also need to modify the proof of Talenti's theorem for such p.
- Such modification gives us that any connected patch (not necessarily simply-connected) must be radial for $\Omega \leq 0$ or $\Omega \geq 1/2$.

Stationary patch/smooth solution

For smooth stationary solutions we can also say the following:

Theorem (Gómez-Serrano, Park, Shi, and Y., '21)

Assume ω is a smooth stationary solution with compact support (or fast decay at infinity). If ω does not change sign, it must be radial up to a translation.

• Idea of proof: approximate a smooth ω by step functions, then apply the previous perturbation for each layer. (Need a quantitative version of Talenti's theorem!)

 Note: If vorticity is allowed to change sign, one can construct nonradial compactly-supported stationary solutions.

(Gómez-Serrano-Park-Shi '21, Enciso-Fernández-Ruiz-Sicbaldi '23).

SQG and generalized SQG

- Consider the Biot-Savart law $u = \nabla^{\perp}(-\Delta)^{-1+\frac{\alpha}{2}}\omega = \nabla^{\perp}(\mathcal{K}_{\alpha}*\omega)$, for $\alpha \in (0,2)$. $(\alpha = 0 \Rightarrow 2D \text{ Euler}; \ \alpha = 1 \Rightarrow \mathsf{SQG})$
- ullet A rotating patch D with angular velocity Ω satisfies

$$1_D * \mathcal{K}_{\alpha} - \frac{\Omega}{2} |x|^2 = \text{const}$$
 on ∂D .

- Existence of patch/smooth rotating solution (for some $\Omega > 0$) given by Castro-Córdoba-Gómez-Serrano '16.
- For $0 < \alpha < 5/3$, all *simply connected* stationary patches are disks. (Reichel '09, Lu–Zhu '12, Choksi–Neumayer–Topaloglu '18, moving plane method).
- Non-simply-connected stationary patches are not necessarily radial: For $\alpha \in (0,2)$, Gómez-Serrano '18 showed there exists non-radial stationary patches bifurcating from an annulus.

Symmetry of stationary/rotating patches

Theorem (Gómez-Serrano, Park, Shi, and Y., '21)

Let D be a simply-connected rotating patch to the gSQG equation with angular velocity Ω . Then:

- For $\alpha \in (0,2)$, if $\Omega \leq 0$, the patch must be a disk.
- For $\alpha \in (0,1)$, there exists a constant $\Omega_{\alpha} = 2^{\alpha-1} \frac{\Gamma(1-\alpha)}{\Gamma(1-\frac{\alpha}{2})^2} \frac{\Gamma(1+\frac{\alpha}{2})}{\Gamma(2-\frac{\alpha}{2})}$ (sharp and explicit) such that if $\Omega \geq \Omega_{\alpha}$ the patch must be a disk.

Symmetry for $\Omega \leq 0$ case

- Known: $1_D * \mathcal{K}_{\alpha} \frac{\Omega}{2}|x|^2 = \text{const on } \partial D$.
- Let $E[D] := \frac{1}{2} \int 1_D (1_D * \mathcal{K}_{\alpha}) \frac{\Omega}{2} |x|^2 dx$.
- Let us perturb *D* by continuous Steiner symmetrization, in a similar spirit as Carrillo–Hittmeir–Volzone–Y. '19.

- Under this perturbation, E[D] decreases to the first order of τ , i.e. $E[S^{\tau}[D]] E[D] < -c\tau$.
- But using that $1_D * \mathcal{K}_{\alpha} \frac{1}{2}\Omega|x|^2 = C$ on ∂D , we also have $E[S^{\tau}[D]] E[D] = o(\tau)$, a contradiction.

The overall story

- If some steady state / rotating solutions are critical points of some associated energy functional, one way to show symmetry/uniqueness is to build your own purturbation / interpolation to decrease the energy by the first order.
- There's no universal method to build it though! Trials and errors are needed.

Disclaimer: only successful examples are shown; failed attempts are hidden on purpose:)

Thank you for your attention!

